This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237882 #15 Aug 07 2025 14:47:28 %S A237882 0,4,8,9,16,17,18,20,24,32,33,34,35,36,37,40,41,48,49,64,65,66,67,68, %T A237882 69,70,72,73,74,80,81,82,84,88,96,97,98,99,104,112,128,129,130,131, %U A237882 132,133,134,135,136,137,138,139,140,141,144,145,146,148,149,152,160 %N A237882 Numbers k such that LR0(k) > LR1(k), where LR0(k) = A087117(k) is the length of the longest run of zeros in the binary representation of k, LR1(k) = A038374(k) is the length of the longest run of ones. %H A237882 Harvey P. Dale, <a href="/A237882/b237882.txt">Table of n, a(n) for n = 1..1000</a> %t A237882 klrQ[n_]:=With[{sidn2=Split[IntegerDigits[n,2]]},Max[Length/@Select[sidn2,#[[1]]==0&]]>Max[Length/@Select[sidn2,#[[1]]==1&]]]; Select[Range[ 0,200],klrQ] (* _Harvey P. Dale_, May 05 2018 *) %o A237882 (Python) %o A237882 for n in range(1000): %o A237882 b = bin(n).lstrip("0b") %o A237882 L0 = L1 = 0 %o A237882 s = '0' %o A237882 if n==0: b=s %o A237882 while b.find(s)>=0: %o A237882 s += '0' %o A237882 L0 += 1 %o A237882 s = '1' %o A237882 while b.find(s)>=0: %o A237882 s += '1' %o A237882 L1 += 1 %o A237882 if L0>L1: print(n, end=', ') %Y A237882 Cf. A038374, A087117. %Y A237882 Cf. A090050 (numbers k such that LR0(k) = LR1(k)). %Y A237882 Cf. A237883 (numbers k such that LR0(k) < LR1(k)). %K A237882 nonn,base %O A237882 1,2 %A A237882 _Alex Ratushnyak_, Feb 14 2014