cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237884 a(n) = (n!*m)/(m!*(m+1)!) where m = floor(n/2).

Original entry on oeis.org

0, 0, 1, 3, 4, 20, 15, 105, 56, 504, 210, 2310, 792, 10296, 3003, 45045, 11440, 194480, 43758, 831402, 167960, 3527160, 646646, 14872858, 2496144, 62403600, 9657700, 260757900, 37442160, 1085822640, 145422675, 4508102925, 565722720, 18668849760, 2203961430
Offset: 0

Views

Author

Peter Luschny, Feb 14 2014

Keywords

Programs

  • Maple
    A237884 := proc(n) m := iquo(n,2); (n!*m)/(m!*(m+1)!) end;
    seq(A237884(n), n = 0..34);
  • Mathematica
    CoefficientList[Series[-((-1 + Sqrt[1 - 4 x^2] -x (-1 + Sqrt[1 - 4 x^2] +
    2 x (-3 + 2 Sqrt[1 - 4 x^2] +x (3 + 4 x - 2 Sqrt[1 - 4 x^2]))))/
    (2 x^2 (1 - 4 x^2)^(3/2))), {x, 0, 30}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
    Table[(n! #)/(#! (# + 1)!) &@ Floor[n/2], {n, 0, 34}] (* Michael De Vlieger, Aug 15 2016 *)
  • Sage
    def A237884():
        r, s, n = 1, 0, 0
        while True:
            yield s
            n += 1
            r *= 4/n if is_even(n) else n
            s = r * (n//2)/(n//2+1)
    a = A237884(); [next(a) for i in range(35)]

Formula

a(2*n) = A001791(n).
a(2*n+1) = A000917(n-1).
a(n) = n^(n mod 2)*binomial(2*floor(n/2), floor(n/2)-1).
a(n) = A162246(n, n+2) = n!/((n-ceiling((n+2)/2))!*floor((n+2)/2)!) if n > 1, otherwise 0.
a(n) = A056040(n)*floor(n/2)/(floor(n/2)+1).
a(n) + A056040(n) = A057977(n).
G.f.: -((p - 1 - x*(p - 1 + 2*x*(2*p - 3 + x*(3 + 4*x - 2*p))))/(2*x^2*p^3)), where p=sqrt(1-4*x^2). - Benedict W. J. Irwin, Aug 15 2016