A237885 a(n) is the number of ways that 4n can be written as p+q (p>q) with p, q, (p-q)/2, 4n-(p-q)/2 all prime numbers.
0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 4, 0, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 5, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 1, 3, 0, 0, 3, 1, 0, 3
Offset: 1
Examples
When n=4, 4n=16, 16=13+3, (13-3)/2=5, 16-5=11, all four numbers {3, 5, 11, 13} are prime numbers. There is no other such four number set with this property, so a(4)=1; When n=30, 4n=120. 120=113+7, (113-7)/2=53, 120-53=67. Set 1: {7, 53, 67, 113}. 120=109+11, (109-11)/2=49=7*7, X 120=107+13, (107-13)/2=47, 120-47=73. Set 2: {13, 47, 73, 107}. 120=103+17, (103-17)/2=43, 120-43=77=7*11, X 120=101+19, (101-19)/2=41, 120-41=79. Set 3: {19, 41, 79, 101}. 120=97+23, (97-23)/2=37, 120-37=83. Set 4: {23, 37, 83, 97}. 120=89+31, (89-31)/2=29, 120-29=91=7*13, X 120=83+37, same with Set 4. 120=79+41, same with Set 3. 120=73+47, same with Set 2. 120=67+53, same with Set 1. 120=61+59, (61-59)/2=1, X So four acceptable sets have been found, and therefore a(30)=4.
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N): P:= select(isprime, [seq(i,i=3..2*N,2)]): nP:= nops(P): for i from 1 to nP do p:= P[i]; for j from i+1 to nP do q:= P[j]; if p+q > 2*N then break fi; r:= (p+q)/2; if isprime(p+2*q) and isprime(2*p+q) then V[r]:= V[r]+1 fi od od: convert(V,list); # Robert Israel, Jun 08 2022
-
Mathematica
Table[qn = 4*n; p = 2*n - 1; ct = 0; While[p = NextPrime[p]; p < qn, q = qn - p; If[PrimeQ[q] && PrimeQ[(p - q)/2] && PrimeQ[qn - (p - q)/2], ct++]]; ct/2, {n, 1, 87}]4*n-1
-
PARI
a(n)=my(s);forprime(p=2,n,if(isprime(2*n-p) && isprime(2*n+p) && isprime(4*n-p), s++)); s \\ Charles R Greathouse IV, Mar 15 2015
Comments