cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237890 Primes p such that p^2 + 4 and p^2 + 10 are also primes.

This page as a plain text file.
%I A237890 #8 Feb 17 2014 23:46:47
%S A237890 3,7,13,97,487,613,743,827,883,1117,1987,2477,2887,3863,4483,5153,
%T A237890 5557,5683,5923,5953,6287,7643,7937,8093,9323,10343,12377,13033,13063,
%U A237890 14087,14767,15373,16937,17713,17987,18257,19013,19333,19753,19853,20287,20873,21673
%N A237890 Primes p such that p^2 + 4 and p^2 + 10 are also primes.
%H A237890 K. D. Bajpai, <a href="/A237890/b237890.txt">Table of n, a(n) for n = 1..1300</a>
%e A237890 7 is prime and appears in the sequence because 7^2+4 = 53 and 7^2+10 = 59 are also primes.
%e A237890 97 is prime and appears in the sequence because 97^2+4 = 9413 and 97^2+10 = 9419 are also primes.
%p A237890 KD := proc() local a,b,d;  a:=ithprime(n);  b:=a^2+4; d:=a^2+10;  if isprime (b) and isprime(d) then RETURN (a); fi;  end: seq(KD(), n=1..5000);
%t A237890 Select[Prime[Range[5000]], PrimeQ[#^2 + 4] && PrimeQ[#^2 + 10] &]
%o A237890 (PARI) s=[]; forprime(p=2, 25000, if(isprime(p^2+4) && isprime(p^2+10), s=concat(s, p))); s \\ _Colin Barker_, Feb 15 2014
%Y A237890 Cf. A000040, A023200, A046136, A230223.
%K A237890 nonn
%O A237890 1,1
%A A237890 _K. D. Bajpai_, Feb 15 2014