This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237913 #23 May 22 2025 10:21:36 %S A237913 2,4,8,88,252,2576,21708,2112,4224,8448,44544,48384,2977792,21989376, %T A237913 405504,4091904,441606144,405909504,886898688,677707776,4285005824, %U A237913 276486684672,21128282112,633498894336,2701312131072,6739855589376,29142024192,65892155129856,4815463645184,445488555884544 %N A237913 Smallest number m > 1 (not ending in a 0) such that m and the digit reversal of m have n prime factors (counted with multiplicity). Palindromes are included. %F A237913 a(n) = min{A076886(n+1), A237912(n)} %e A237913 252 is the smallest number such that 252 and its reverse (also 252) have 5 prime factors (2*2*3*3*7). So, a(5) = 252. %e A237913 2576 is the smallest number such that 2576 and its reverse (6752) have 6 prime factors (2*2*2*2*7*23 and 2*2*2*2*2*211, respectively). So a(6) = 2576. %o A237913 (Python) %o A237913 import sympy %o A237913 from sympy import factorint %o A237913 def rev(x): %o A237913 rev = '' %o A237913 for i in str(x): %o A237913 rev = i + rev %o A237913 return int(rev) %o A237913 def RevFact(x): %o A237913 n = 2 %o A237913 while n < 10**8: %o A237913 if n % 10 != 0: %o A237913 if sum(list(factorint(n).values())) == x: %o A237913 if sum(list(factorint(rev(n)).values())) == x: %o A237913 return n %o A237913 else: %o A237913 n += 1 %o A237913 else: %o A237913 n += 1 %o A237913 else: %o A237913 n += 1 %o A237913 x = 1 %o A237913 while x < 100: %o A237913 print(RevFact(x)) %o A237913 x += 1 %Y A237913 Cf. A004086, A076886, A237912. %K A237913 nonn,base %O A237913 1,1 %A A237913 _Derek Orr_, Feb 15 2014 %E A237913 a(17)-a(21) from _Giovanni Resta_, Feb 23 2014 %E A237913 a(22)-a(30) from _Max Alekseyev_, Feb 08 2024