This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237928 #10 Apr 26 2016 12:43:54 %S A237928 1,1,1,2,1,1,3,3,0,1,18,14,9,0,1,95,75,35,10,0,1,540,369,135,55,15,0, %T A237928 1,3759,2800,1239,420,70,21,0,1,30310,22980,10570,2884,735,112,28,0,1, %U A237928 272817,202797,87534,24780,6489,1134,168,36,0,1 %N A237928 Triangular array read by rows. T(n,k) is the number of n-permutations with k cycles of length one or k cycles of length two, n>=0,0<=k<=n. %F A237928 E.g.f.: A(x,y) + B(x,y) - C(x,y) where A(x,y) is e.g.f. for A008290, B(x,y) is e.g.f. for A114320, and C(x,y) = exp(-x - x^2/2)/(1-x)*Sum_{n>=0}y^n*x^(3n)/(2^n*n!^2). %e A237928 1, %e A237928 1, 1, %e A237928 2, 1, 1, %e A237928 3, 3, 0, 1, %e A237928 18, 14, 9, 0, 1, %e A237928 95, 75, 35, 10, 0, 1, %e A237928 540, 369, 135, 55, 15, 0, 1, %e A237928 3759, 2800, 1239, 420, 70, 21, 0, 1 %e A237928 T(3,0)=3 because we have: (1)(2)(3);(1,2,3);(2,1,3) %t A237928 nn=10;c=Sum[y^n x^(3n)/(2^n*n!^2),{n,0,nn}];Table[Take[(Range[0,nn]!CoefficientList[Series[Exp[y x]Exp[-x]/(1-x)+Exp[y x^2/2]Exp[-x^2/2]/(1-x)-c Exp[-x-x^2/2!]/(1-x),{x,0,nn}],{x,y}])[[n]],n],{n,1,nn}]//Grid %K A237928 nonn,tabl %O A237928 0,4 %A A237928 _Geoffrey Critzer_, Feb 15 2014