This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237975 #7 Apr 06 2014 22:24:12 %S A237975 0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,4,4,3,2,2,2,2,2,2,2,2,2,2,2,2,5,5,4,4, %T A237975 3,3,5,5,4,4,5,5,5,5,5,4,4,4,5,5,5,3,3,3,5,5,5,4,4,4,5,5,5,6,9,5,5,5, %U A237975 5,5,5,11,6,10,5,5,4,4,4,4,5,11,9,8,9,6,10,5,5,5,5,5,5,5,5,8,11,11,7,8 %N A237975 Least nonnegative integer m such that for some k = 1, ..., n there are exactly m^2 twin prime pairs not exceeding k*n. %C A237975 The conjecture in A237840 implies that a(n) exists for any n > 0. %H A237975 Zhi-Wei Sun, <a href="/A237975/b237975.txt">Table of n, a(n) for n = 1..10000</a> %H A237975 Z.-W. Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014 %e A237975 a(7) = 2 since there are exactly 2^2 twin prime pairs not exceeding 3*7 = 21 (namely, {3, 5}, {5, 7}, {11, 13} and{17,19}), and the number of twin prime pairs not exceeding 1*7 or 2*7 is not a square. %e A237975 a(18055) = 675 since there are exactly 675^2 = 455625 twin prime pairs not exceeding 5758*18055. %t A237975 tw[0]:=0 %t A237975 tw[n_]:=tw[n-1]+If[PrimeQ[Prime[n]+2],1,0] %t A237975 SQ[n_]:=IntegerQ[Sqrt[tw[PrimePi[n]]]] %t A237975 Do[Do[If[SQ[k*n-2],Print[n," ",Sqrt[tw[PrimePi[k*n-2]]]];Goto[aa]],{k,1,n}];Print[n," ",0];Label[aa];Continue,{n,1,100}] %Y A237975 Cf. A000290, A001359, A006512, A237840, A237879. %K A237975 nonn %O A237975 1,7 %A A237975 _Zhi-Wei Sun_, Feb 16 2014