This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237976 #24 Jan 18 2022 06:42:24 %S A237976 0,0,0,1,1,1,2,2,3,4,6,7,9,11,14,17,21,25,31,37,45,54,64,76,90,106, %T A237976 124,146,170,198,230,267,308,357,410,472,542,621,709,811,923,1051, %U A237976 1194,1355,1534,1738,1962,2215,2497,2812,3161,3553,3986,4469,5005,5600,6258 %N A237976 Number of strict partitions of n such that (least part) < number of parts. %H A237976 Seiichi Manyama, <a href="/A237976/b237976.txt">Table of n, a(n) for n = 0..1000</a> %F A237976 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * (1-x^(k*(k-1))) / Product_{j=1..k} (1-x^j). - _Seiichi Manyama_, Jan 13 2022 %F A237976 a(n) = A000009(n) - A025157(n). - _Vaclav Kotesovec_, Jan 18 2022 %e A237976 a(8) = 3 counts these partitions: 71, 521, 431. %t A237976 z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; %t A237976 p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]] %t A237976 Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}] (* A237976 *) %t A237976 Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *) %t A237976 Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *) %t A237976 Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}] (* A237979 *) %t A237976 Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *) %o A237976 (PARI) my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=0, N, x^(k*(k+1)/2)*(1-x^(k*(k-1)))/prod(j=1, k, 1-x^j)))) \\ _Seiichi Manyama_, Jan 13 2022 %Y A237976 Cf. A000009, A237977, A096401, A237979, A025157, A039899. %K A237976 nonn,easy %O A237976 0,7 %A A237976 _Clark Kimberling_, Feb 18 2014 %E A237976 Prepended a(0)=0, _Seiichi Manyama_, Jan 13 2022