A237980 Array: row n gives the number of distinct square partitions of n; see Comments.
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 25, 28, 32, 36, 44, 49, 60, 66, 80, 89, 103, 115, 132, 147, 168, 188, 212, 236, 269, 301, 344, 385, 437, 485, 549, 606, 678, 751, 837, 926, 1031, 1133, 1263, 1389, 1541, 1696, 1889, 2068, 2306, 2529
Offset: 1
Examples
The 7 square partitions of 12 are as follows: [12], [11,1], [10,2], [9,3], [8,3,1], [8,4], [7,4,1]. The Ferrers matrix of the partition [4,3,3,1,1] of 12 is shown here: 1 . 1 . 1 . 1 . 0 1 . 1 . 1 . 0 . 0 1 . 1 . 1 . 0 . 0 1 . 0 . 0 . 0 . 0 1 . 0 . 0 . 0 . 0. The outermost square has 8 1s, the next has 3 1s, and the innermost, 1 1, so that [8,3,1] is a square partition of 12.
Crossrefs
Cf. A237985.
Programs
-
Mathematica
z=20; ferrersMatrix[list_]:=PadRight[Map[Table[1,{#}]&,#],{#,#}&[Max[#,Length[#]]]]&[list]; sqPart[list_]:=DeleteCases[Total[{Total[LowerTriangularize[#]+ Transpose[UpperTriangularize[#,1]]]&[Reverse[LowerTriangularize[#]]],Reverse[Total[Transpose[ LowerTriangularize[#]]+UpperTriangularize[#,1]]]&[Reverse[UpperTriangularize[#,1]]]}&[ferrersMatrix[list]]],0]; sqParts[n_]:=#[[Reverse[Ordering[PadRight[#]]]]]&[DeleteDuplicates[Map[sqPart,IntegerPartitions[n]]]] Flatten[sq=Map[sqParts[#]&,Range[z]]] (*A237985*) Map[Length,sq] (*A237980*) (* Peter J. C. Moses, Feb 19 2014 *)
Comments