cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237982 Triangular array read by rows: row n gives the NE partitions of n (see Comments).

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

See Comments at A237981 for definitions of the directional partitions, NW, NE, SW, SE. The number of NE partitions of n, and also the number of SW partitions of n, is A237329(n), for n >=1.
The order is: each partition has nonincreasing parts and the partitions are ordered anti-lexicographic (called "Mathematica order" in the example). - Wolfdieter Lang, Mar 21 2014

Examples

			The first 4 rows of the array of NW partitions:
1
2 .. 1 .. 1
3 .. 2 .. 1 .. 1 .. 1 .. 1
4 .. 3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows:  [4], [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
		

Crossrefs

Programs

  • Mathematica
    z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]};    Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &,    Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
    Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
    Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
    Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
    Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
    (* Peter J. C. Moses, Feb 25 2014 *)