cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237983 Triangular array read by rows: row n gives the SE partitions of n; see Comments.

This page as a plain text file.
%I A237983 #13 Mar 21 2014 13:55:36
%S A237983 1,1,1,2,1,1,1,1,3,1,2,1,1,1,1,1,1,3,1,1,2,2,1,2,1,1,1,1,1,1,1,1,3,2,
%T A237983 1,3,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,3,3,1,3,2,1,1,3,1,1,1,1,2,2,
%U A237983 2,1,2,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1
%N A237983 Triangular array read by rows: row n gives the SE partitions of n; see Comments.
%C A237983 See Comments at A237981 for definitions of the directional partitions, NW, NE, SW, SE.  The number of SE partitions of n is A122129(n) for n >=1.
%H A237983 Clark Kimberling, <a href="/A237983/b237983.txt">Table of n, a(n) for n = 1..1000</a>
%H A237983 Clark Kimberling and Peter J. C. Moses, <a href="http://faculty.evansville.edu/ck6/GalleryThree/Introduction3.html">Ferrers Matrices and Related Partitions of Integers</a>
%e A237983 The first 4 rows of the array of SE partitions:
%e A237983 1
%e A237983 1 .. 1
%e A237983 2 .. 1 .. 1 .. 1 .. 1
%e A237983 3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
%e A237983 Row 4, for example, represents the 4 NE partitions of 4 as follows:  [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
%t A237983 z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]};    Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &,    Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
%t A237983 Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
%t A237983 Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
%t A237983 Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
%t A237983 Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
%t A237983 (* _Peter J. C. Moses_, Feb 25 2014 *)
%Y A237983 Cf. A237981, A237982, A237985, A238325, A238326.
%K A237983 nonn,tabf,easy
%O A237983 1,4
%A A237983 _Clark Kimberling_ and _Peter J. C. Moses_, Feb 25 2014