A237985 Array: row n shows the square partitions of n.
1, 2, 3, 4, 5, 4, 1, 6, 5, 1, 7, 6, 1, 5, 2, 8, 7, 1, 6, 2, 9, 8, 1, 7, 2, 6, 3, 10, 9, 1, 8, 2, 7, 3, 6, 4, 11, 10, 1, 9, 2, 8, 3, 7, 4, 7, 3, 1, 12, 11, 1, 10, 2, 9, 3, 8, 4, 8, 3, 1, 7, 4, 1, 13, 12, 1, 11, 2, 10, 3, 9, 4, 9, 3, 1, 8, 5, 8, 4, 1, 7, 5, 1
Offset: 1
Examples
The 7 square partitions of 12 are as follows: [12], [11,1], [10,2], [9,3], [8,4], [8,3,1], [7,4,1]. The Ferrers matrix of the partition [4,3,3,1,1] of 12 is shown here: ... 1 . 1 . 1 . 1 . 0 1 . 1 . 1 . 0 . 0 1 . 1 . 1 . 0 . 0 1 . 0 . 0 . 0 . 0 1 . 0 . 0 . 0 . 0. The outermost square has 8 1s, the next has 3 1s, and the innermost, 1 1, so that [8,3,1] is a square partition of 12. The first 9 rows of the array: 1 2 3 4 5 4 1 6 5 1 7 6 1 5 2 8 7 1 6 2 9 8 1 7 2 6 3
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Clark Kimberling and Peter J. C. Moses, Ferrers Matrices and Related Partitions of Integers
Programs
-
Mathematica
z=20; ferrersMatrix[list_]:=PadRight[Map[Table[1,{#}]&,#],{#,#}&[Max[#,Length[#]]]]&[list]; sqPart[list_]:=DeleteCases[Total[{Total[LowerTriangularize[#]+Transpose[UpperTriangularize[#,1]]]&[Reverse[LowerTriangularize[#]]],Reverse[Total[Transpose[LowerTriangularize[#]]+UpperTriangularize[#,1]]]&[Reverse[UpperTriangularize[#,1]]]}&[ferrersMatrix[list]]],0]; sqParts[n_]:=#[[Reverse[Ordering[PadRight[#]]]]]&[DeleteDuplicates[Map[sqPart,IntegerPartitions[n]]]] Flatten[sq=Map[sqParts[#]&,Range[z]]] (*A237985*) Map[Length,sq] (*A237980*) (* Peter J. C. Moses, Feb 19 2014 *)
Comments