cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237987 a(n) = Hermite(n,1/5)*5^n/2^round(n/2)*(-1)^floor(n/2).

This page as a plain text file.
%I A237987 #14 Feb 15 2019 09:57:34
%S A237987 1,1,23,73,1579,8879,179617,1511467,28410041,330703441,5730852343,
%T A237987 88406712593,1399170969139,27921184747039,398888195476097,
%U A237987 10171302856939747,129240467589656881,4197761610365555681,46531675504873063063,1935524400169373119513
%N A237987 a(n) = Hermite(n,1/5)*5^n/2^round(n/2)*(-1)^floor(n/2).
%C A237987 The "quintessence" of sequence A158960. Intended to be read as: H_n(1/5) = (-1)^floor(n/2)*2^round(n/2)*a(n)/5^n; where "round" could be replaced by "ceiling".
%C A237987 First negative term is a(32). _Georg Fischer_, Feb 15 2019
%H A237987 G. C. Greubel, <a href="/A237987/b237987.txt">Table of n, a(n) for n = 0..450</a>
%t A237987 Table[HermiteH[n, 1/5]*5^n/2^Ceiling[n/2]*(-1)^Floor[n/2], {n, 0, 50}] (* _G. C. Greubel_, Jul 12 2018 *)
%o A237987 (PARI) vector(30,n,polhermite(n,1/5)*5^n/2^((n+1)\2)/(-1)^(n\2))
%K A237987 sign
%O A237987 0,3
%A A237987 _M. F. Hasler_, Feb 16 2014