This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237998 #20 Nov 03 2018 18:46:53 %S A237998 0,1,3,10,64,831,26207,2239706,567852809,454241403975, %T A237998 1192075219982204,10510218491798860052,315981966712495811700951, %U A237998 32726459268483342710907384794,11771239570056489326716955796095261,14808470136486015545654676685321653888199 %N A237998 Number of partitions of 2^n into parts that are at most n. %H A237998 Alois P. Heinz, <a href="/A237998/b237998.txt">Table of n, a(n) for n = 0..62</a> %H A237998 A. V. Sills and D. Zeilberger, <a href="https://arxiv.org/abs/1108.4391">Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz)</a> (arXiv:1108.4391 [math.CO]) %F A237998 a(n) = [x^(2^n)] Product_{j=1..n} 1/(1-x^j). %F A237998 a(n) ~ 2^(n*(n-1)) / (n!*(n-1)!). - _Vaclav Kotesovec_, Jun 05 2015 %e A237998 a(1) = 1: 11. %e A237998 a(2) = 3: 22, 211, 1111. %e A237998 a(3) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111. %t A237998 a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n}]; %t A237998 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Nov 03 2018 *) %Y A237998 Column k=2 of A238010. %Y A237998 Cf. A236810, A237512, A237999, A238000, A238001, A258672. %K A237998 nonn %O A237998 0,3 %A A237998 _Alois P. Heinz_, Feb 16 2014