This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237999 #22 May 31 2019 20:13:51 %S A237999 0,1,1,2,9,119,4935,596763,211517867,224663223092,734961197081208, %T A237999 7614278809664610952,256261752606028225485183, %U A237999 28642174350851846128820426827,10830277060032417592098008847162727,14068379226083299071248895931891435683229 %N A237999 Number of partitions of 2^n into parts that are at most n with at least one part of each size. %C A237999 From _Gus Wiseman_, May 31 2019: (Start) %C A237999 Also the number of strict integer partitions of 2^n with n parts. For example, the a(1) = 1 through a(4) = 9 partitions are (A = 10): %C A237999 (2) (31) (431) (6532) %C A237999 (521) (6541) %C A237999 (7432) %C A237999 (7531) %C A237999 (7621) %C A237999 (8431) %C A237999 (8521) %C A237999 (9421) %C A237999 (A321) %C A237999 (End) %H A237999 Alois P. Heinz, <a href="/A237999/b237999.txt">Table of n, a(n) for n = 0..62</a> %H A237999 A. V. Sills and D. Zeilberger, <a href="https://arxiv.org/abs/1108.4391">Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz)</a>, arXiv:1108.4391 [math.CO], 2011. %F A237999 a(n) = [x^(2^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j). %F A237999 a(n) ~ 2^(n*(n-1)) / (n!*(n-1)!). - _Vaclav Kotesovec_, Jun 05 2015 %e A237999 a(1) = 1: 11. %e A237999 a(2) = 1: 211. %e A237999 a(3) = 2: 3221, 32111. %e A237999 a(4) = 9: 433321, 443221, 4322221, 4332211, 4432111, 43222111, 43321111, 432211111, 4321111111. %t A237999 a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n - n*(n + 1)/2}]; %t A237999 Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 15}] (* _Jean-François Alcover_, Aug 19 2018 *) %Y A237999 Column k=2 of A238012. %Y A237999 Cf. A236810, A237512, A237998, A238000, A238001. %Y A237999 Cf. A000009, A002033, A067735, A126796, A283111. %K A237999 nonn %O A237999 0,4 %A A237999 _Alois P. Heinz_, Feb 16 2014