This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238004 #7 Feb 27 2014 20:20:36 %S A238004 2,2,4,4,2,4,6,4,4,6,4,4,12,2,4,4,8,6,8,4,4,8,12,4,12,4,4,8,8,4,6,18, %T A238004 8,4,4,8,8,4,12,12,6,24,2,4,4,8,8,4,8,12,6,12,12,24,10,4,4,8,8,4,8,12, %U A238004 12,8,12,6,36,4,8,20,4,4,8,8,4,8,12,8,8,12 %N A238004 Limiting row of the array at A238325. %C A238004 For fixed m >= 2 and sufficiently large k, the first m+1 antidiagonal partitions of k, listed in reverse Mathematica order, are as follows: p(0) = [1,1,...,1] (k 1's), p(1) = [2,1,...,1] (k-2 1's), p(2) = [2,2,1,...,1] (k-4 1's), ..., p[m] = [2,...,2,1,...,1] (m 2's and k-2m 1's). The number of occurrences of p(n) among all the partitions of k (for sufficiently large k), is a(n); see Example. %H A238004 Clark Kimberling and Peter J. C. Moses, <a href="http://faculty.evansville.edu/ck6/GalleryThree/Introduction3.html">Ferrers Matrices and Related Partitions of Integers</a> %e A238004 Referring to the antidiagonal partitions p(i) in Comments, p(0) occurs 2 times for all k >=2; p(1) occurs 2 times for all k >=5; p(2) occurs 4 times for all k >= 7; p(3) occurs 4 times for all k >= 9; etc., so that A238004 begins with 2, 2, 4, 4. %t A238004 ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; antiDiagPartNE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[Reverse[m], #] &, Range[-#, #] &[Length[m] - 1]]]; a[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, antiDiagPartNE[#]]]], 0] &, IntegerPartitions[n]]]]] %t A238004 Take[a[40], 100] (* _Peter J. C. Moses_, Feb 18 2014 *) %Y A238004 Cf. A238325. %K A238004 nonn,easy %O A238004 0,1 %A A238004 _Clark Kimberling_ and _Peter J. C. Moses_, Feb 25 2014