cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238006 Number of strict partitions of n such that (greatest part) - (least part) > (number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 8, 11, 14, 18, 22, 27, 33, 41, 49, 59, 70, 83, 98, 116, 136, 159, 186, 215, 249, 289, 333, 383, 441, 505, 578, 660, 752, 856, 974, 1105, 1252, 1418, 1602, 1808, 2039, 2295, 2581, 2901, 3255, 3649, 4088, 4573, 5111, 5709, 6368
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  7+1, 6+2, 5+2+1.
		

Crossrefs

Programs

  • Mathematica
    z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]];
    Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}]  (* A001227 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}]  (* A238006 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *)

Formula

A001227(n) + A238005(n) + a(n) = A000009(n). - R. J. Mathar, Sep 08 2021
From Omar E. Pol, Sep 11 2021: (Start)
a(n) = A000009(n) - A003056(n).
a(n) = A238007(n) - A238005(n). (End)