A238006 Number of strict partitions of n such that (greatest part) - (least part) > (number of parts).
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 8, 11, 14, 18, 22, 27, 33, 41, 49, 59, 70, 83, 98, 116, 136, 159, 186, 215, 249, 289, 333, 383, 441, 505, 578, 660, 752, 856, 974, 1105, 1252, 1418, 1602, 1808, 2039, 2295, 2581, 2901, 3255, 3649, 4088, 4573, 5111, 5709, 6368
Offset: 1
Examples
a(8) = 3 counts these partitions: 7+1, 6+2, 5+2+1.
Programs
-
Mathematica
z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A001227 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A238006 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *)
Formula
From Omar E. Pol, Sep 11 2021: (Start)