A238007 Number of strict partitions of n such that (greatest part) - (least part) >= (number of parts).
0, 0, 0, 1, 1, 2, 3, 5, 5, 8, 10, 13, 16, 20, 23, 31, 36, 43, 52, 62, 72, 87, 102, 120, 139, 163, 188, 220, 254, 292, 338, 389, 444, 510, 581, 665, 758, 862, 978, 1111, 1258, 1422, 1608, 1814, 2042, 2302, 2588, 2908, 3261, 3655, 4093, 4580, 5118, 5714, 6374
Offset: 1
Examples
a(9) = 5 counts these partitions: 81, 72, 63, 621, 531.
Links
- Robert Israel, Table of n, a(n) for n = 1..200
Programs
-
Maple
spart:= proc(n, a,b,k) option remember; # count strict partitions of n in exactly k parts with parts in [a,b] if min(k,n) = 0 then if n=k then return 1 else return 0 fi fi; if n < k*(2*a+k-1)/2 or n > k*(2*b-k+1)/2 then return 0 fi; add (procname(n-x, a, x-1,k-1), x=a..min(n,b)); end proc: f:= n -> add(add(add(spart(n-a-b,a+1,b-1,k-2),k=2..b-a),b=a+2..n),a=1..n-2): map(f, [$1..100]); # Robert Israel, Mar 06 2017
-
Mathematica
z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A001227 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A238006 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *)
Comments