cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238007 Number of strict partitions of n such that (greatest part) - (least part) >= (number of parts).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 5, 8, 10, 13, 16, 20, 23, 31, 36, 43, 52, 62, 72, 87, 102, 120, 139, 163, 188, 220, 254, 292, 338, 389, 444, 510, 581, 665, 758, 862, 978, 1111, 1258, 1422, 1608, 1814, 2042, 2302, 2588, 2908, 3261, 3655, 4093, 4580, 5118, 5714, 6374
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2014

Keywords

Comments

From Omar E. Pol, Mar 04 2017: (Start)
Partitions into distinct parts are sometimes called "strict partitions".
a(n) is also the number of partitions of n into distinct parts, which are not the partitions into (one or more) consecutive parts. (End)

Examples

			a(9) = 5 counts these partitions:  81, 72, 63, 621, 531.
		

Crossrefs

Programs

  • Maple
    spart:= proc(n, a,b,k) option remember;
    # count strict partitions of n in exactly k parts with parts in [a,b]
    if min(k,n) = 0 then if n=k then return 1 else return 0 fi fi;
    if n < k*(2*a+k-1)/2 or n > k*(2*b-k+1)/2 then return 0 fi;
    add (procname(n-x, a, x-1,k-1), x=a..min(n,b));
    end proc:
    f:= n -> add(add(add(spart(n-a-b,a+1,b-1,k-2),k=2..b-a),b=a+2..n),a=1..n-2):
    map(f, [$1..100]); # Robert Israel, Mar 06 2017
  • Mathematica
    z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]];
    Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}]  (* A001227 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}]  (* A238006 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *)

Formula

a(n) = A000009(n) - A001227(n). - Omar E. Pol, Mar 04 2017
a(n) = A238005(n)+A238006(n). - R. J. Mathar, Sep 08 2021