This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238012 #30 Aug 29 2018 21:14:53 %S A238012 0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,1,4,2,0,0,0,1,7,48,9,0,0,0,1,12,310, %T A238012 3042,119,0,0,0,1,17,1240,109809,1067474,4935,0,0,0,1,24,3781,1655004, %U A238012 370702459,2215932130,596763,0,0,0,1,31,9633,14942231,32796849930,13173778523786,29012104252380,211517867,0,0 %N A238012 Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A238012 In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - _Vaclav Kotesovec_, Jun 05 2015 %H A238012 Alois P. Heinz, <a href="/A238012/b238012.txt">Antidiagonals n = 0..43, flattened</a> %H A238012 A. V. Sills and D. Zeilberger, <a href="https://arxiv.org/abs/1108.4391">Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz)</a>, arXiv:1108.4391 [math.CO], 2011. %F A238012 A(n,k) = [x^(k^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j). %e A238012 Square array A(n,k) begins: %e A238012 0, 0, 0, 0, 0, 0, ... %e A238012 0, 1, 1, 1, 1, 1, ... %e A238012 0, 0, 1, 4, 7, 12, ... %e A238012 0, 0, 2, 48, 310, 1240, ... %e A238012 0, 0, 9, 3042, 109809, 1655004, ... %e A238012 0, 0, 119, 1067474, 370702459, 32796849930, ... %t A238012 A[0, 0] = 0; %t A238012 A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}]; %t A238012 Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Aug 18 2018, after _Alois P. Heinz_ *) %Y A238012 Columns k=0-10 give: A000004, A063524, A237999, A239162, A239163, A239164, A239165, A239166, A239167, A239168, A239169. %Y A238012 Rows n=0-2 give: A000004, A057427, A074148(k-1) for k>1. %Y A238012 Main diagonal gives A238001. %Y A238012 Cf. A238010. %K A238012 nonn,tabl %O A238012 0,18 %A A238012 _Alois P. Heinz_, Feb 16 2014