This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238015 #21 Feb 19 2014 14:25:21 %S A238015 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,2,2,4,1,1, %T A238015 1,1,1,1,1,2,1,1,1,2,1,2,2,4,1,1,1,2,1,2,2,4,1,2,2,4,2,4,4,8,1,1,1,1, %U A238015 1,1,1,2,1,1,1,2,1,2,2,4,1,1,1,2,1,2,2,4,1,2,2,4,2,4,4,8,1,1,1,2,1 %N A238015 Denominator of (2*n+1)!*8*Bernoulli(2*n,1/2). %C A238015 It appears that a(n) is 1 for n in A095736, 2 for n in A014312, 4 for n in A014313, 8 for n in A023688, 16 for n in A023689, 32 for n in A023690, 64 for n in A023691. - _Michel Marcus_, Feb 18 2014 %H A238015 Robert Israel, <a href="/A238015/b238015.txt">Table of n, a(n) for n = 0..2000</a> %e A238015 For n=15, (2*15+1)!*8*Bernoulli(2*15,1/2) = -79147239268966167007717425917182573906640625/2 so a(15) = 2. %p A238015 seq(denom((2*n+1)!*8*bernoulli(2*n,1/2)), n=0 .. 100); %t A238015 Table[Denominator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 200}] (* _Vincenzo Librandi_, Feb 18 2014 *) %Y A238015 Cf. A033473. %K A238015 nonn,frac %O A238015 0,16 %A A238015 _Robert Israel_, Feb 17 2014