This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238090 #26 Nov 13 2021 08:34:09 %S A238090 11,13,191,223,251,3019,3023,3037,3067,3259,3323,3517,3533,3547,3581, %T A238090 3583,4027,4091,4093,48079,48091,48383,48571,48589,49103,49117,52189, %U A238090 52223,52667,52733,53197,56267,56269,56509,56527,56543,56767,56779,56783,56827,64717,64763,769019,769231,769243,769247,769469,769487 %N A238090 Primes whose hexadecimal representation contains only consonants. %C A238090 Primes whose hexadecimal representation contains only the "digits" B, C, D and F. %C A238090 There are no primes whose hexadecimal representation contains only the vowels A and E (for these would be even numbers greater than 2). %H A238090 Michael S. Branicky, <a href="/A238090/b238090.txt">Table of n, a(n) for n = 1..21472</a> (all terms with <= 9 hexadecimal digits; terms 1..166 from N. J. A. Sloane) %e A238090 The first few terms and their hexadecimal representations (written with least significant "digit" on the left) are: %e A238090 11, [B] %e A238090 13, [D] %e A238090 191, [F, B] %e A238090 223, [F, D] %e A238090 251, [B, F] %e A238090 3019, [B, C, B] %e A238090 3023, [F, C, B] %e A238090 3037, [D, D, B] %e A238090 3067, [B, F, B] %e A238090 3259, [B, B, C] %e A238090 3323, [B, F, C] %e A238090 ... %o A238090 (Python) %o A238090 from sympy import isprime, primerange %o A238090 def ok(p): return set(hex(p)[2:]) <= set("bcdf") %o A238090 def aupton(limit): return [p for p in primerange(1, limit+1) if ok(p)] %o A238090 print(aupton(769487)) # _Michael S. Branicky_, Nov 13 2021 %o A238090 (Python) # faster version for going to large numbers %o A238090 from sympy import isprime %o A238090 from itertools import product %o A238090 def auptohd(m): # terms up to m hex digits %o A238090 return [t for t in (int("".join(p), 16) for d in range(1, m+1) for p in product("bcdf", repeat=d)) if isprime(t)] %o A238090 print(auptohd(7)) # _Michael S. Branicky_, Nov 13 2021 %Y A238090 Cf. A140969. %K A238090 nonn,base %O A238090 1,1 %A A238090 _N. J. A. Sloane_, Feb 19 2014, corrected Feb 20 2014