cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238106 a(n) = A238104(n)/9.

Original entry on oeis.org

0, 3, 1, 3, 8, 9, 11, 14, 6, 1, 2, 10, 23, 7, 29, 30, 16, 14, 4, 6, 19, 22, 48, 2, 17, 25, 54, 56, 21, 65, 4, 23, 74, 34, 39, 40, 83, 23, 89, 90, 41, 96, 49, 45, 15, 111, 54, 114, 116, 2, 15, 25, 128, 131, 134, 2, 36, 14, 69, 73, 75, 68, 156, 39, 55, 168, 84, 58
Offset: 3

Views

Author

N. J. A. Sloane, Mar 01 2014

Keywords

Crossrefs

Cf. A238104.

Programs

  • Mathematica
    a[n_/;n>3]:=Module[{r=1,s=1},While[r=Mod[10r,Prime[n]];r!=1,s+=r];s/Prime[n]];Table[a[n],{n,4,100}] (* Herbert Kociemba, May 19 2017 *)
    Array[Function[p, If[Divisible[10, p], 0, Total[RealDigits[1/p][[1, 1]]]]/9]@ Prime@ # &, 68, 3] (* Michael De Vlieger, May 20 2017 *)

A238105 A238104(n)/3.

Original entry on oeis.org

0, 1, 0, 9, 3, 9, 24, 27, 33, 42, 18, 3, 6, 30, 69, 21, 87, 90, 48, 42, 12, 18, 57, 66, 144, 6, 51, 75, 162, 168, 63, 195, 12, 69, 222, 102, 117, 120, 249, 69, 267, 270, 123, 288, 147, 135, 45, 333, 162, 342, 348, 6, 45, 75, 384, 393, 402, 6, 108, 42, 207, 219, 225, 204, 468, 117, 165, 504, 252, 174
Offset: 1

Views

Author

N. J. A. Sloane, Mar 01 2014

Keywords

Crossrefs

Cf. A238104.

A244661 Beastly reciprocals, or numbers n such that digitsum(1/n) = 666.

Original entry on oeis.org

149, 298, 596, 646, 745, 1192, 1490, 1615, 2119, 2584, 2980, 3109, 3725, 3878, 5960, 6218, 6357, 6460, 7106, 7294, 7450, 8476, 9262, 9868, 10941, 11627, 11634, 11920, 12436, 14535, 14900, 15049, 15545, 16150, 18625, 21190, 22718, 23256, 23902, 24872, 24915
Offset: 1

Views

Author

Anthony Sand, Jul 04 2014

Keywords

Comments

149 is a full reptend prime (see A001913), hence the sum of the decimal digits of 1/149 is 9 * 148 / 2 = 666.
From Robert G. Wilson v, Aug 16 2014: (Start)
If n is present, so is 10n.
If n is present then A003592*n is possibly present.
Primitives are: 149, 646, 1615, 2119, 3109, 3878, 7294, 9262, 9868, 10941, …, .
Palindromes: 646, 1525251, 2062602, …, .
Primes: 149, 3109, 111149, 351391, …, .
(End)

Examples

			If digitsum(1/n) sums the decimal digits of 1/n up to the point at which they recur or terminate, then digitsum(1/149) = 666 = 0 + 0 + 6 + 7 + 1 + 1 + 4 + 0 + 9 + 3 + 9 + 5 + 9 + 7 + 3 + 1 + 5 + 4 + 3 + 6 + 2 + 4 + 1 + 6 + 1 + 0 + 7 + 3 + 8 + 2 + 5 + 5 + 0 + 3 + 3 + 5 + 5 + 7 + 0 + 4 + 6 + 9 + 7 + 9 + 8 + 6 + 5 + 7 + 7 + 1 + 8 + 1 + 2 + 0 + 8 + 0 + 5 + 3 + 6 + 9 + 1 + 2 + 7 + 5 + 1 + 6 + 7 + 7 + 8 + 5 + 2 + 3 + 4 + 8 + 9 + 9 + 3 + 2 + 8 + 8 + 5 + 9 + 0 + 6 + 0 + 4 + 0 + 2 + 6 + 8 + 4 + 5 + 6 + 3 + 7 + 5 + 8 + 3 + 8 + 9 + 2 + 6 + 1 + 7 + 4 + 4 + 9 + 6 + 6 + 4 + 4 + 2 + 9 + 5 + 3 + 0 + 2 + 0 + 1 + 3 + 4 + 2 + 2 + 8 + 1 + 8 + 7 + 9 + 1 + 9 + 4 + 6 + 3 + 0 + 8 + 7 + 2 + 4 + 8 + 3 + 2 + 2 + 1 + 4 + 7 + 6 + 5 + 1.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Total[ RealDigits[ 1/n, 10][[1, 1]]] == 666;  Select[ Range@ 25000, fQ ] (* Robert G. Wilson v, Aug 16 2014 *)
Showing 1-3 of 3 results.