cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238108 a(n) = (n - 1)*(n - 2)*(5*n^4 + 3*n^3 + 34*n^2 - 264*n + 180)/360.

This page as a plain text file.
%I A238108 #10 Jun 13 2015 00:54:58
%S A238108 1,0,0,1,19,107,386,1086,2597,5530,10788,19647,33847,55693,88166,
%T A238108 135044,201033,291908,414664,577677,790875,1065919,1416394,1858010,
%U A238108 2408813,3089406,3923180,4936555,6159231,7624449,9369262
%N A238108 a(n) = (n - 1)*(n - 2)*(5*n^4 + 3*n^3 + 34*n^2 - 264*n + 180)/360.
%C A238108 n!*a(n) = number of self-avoiding paths in n-cube from 00...0 to 11...1 with two back-steps.
%H A238108 J. Berestycki, É. Brunet, Z. Shi, <a href="http://arxiv.org/abs/1401.6894">Accessibility percolation with backsteps</a>, arXiv preprint arXiv:1401.6894, 2014
%H A238108 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F A238108 a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=19, a(5)=107, a(6)=386, a(n)= 7*a(n-1)- 21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - _Harvey P. Dale_, Mar 15 2015
%F A238108 G.f.: ( -1+34*x^3-47*x^4+26*x^5-8*x^6+7*x-21*x^2 ) / (x-1)^7 . - _R. J. Mathar_, Apr 23 2015
%t A238108 Table[(n-1)(n-2)(5n^4+3n^3+34n^2-264n+180)/360,{n,0,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,0,0,1,19,107,386},40] (* _Harvey P. Dale_, Mar 15 2015 *)
%Y A238108 Cf. A059783, A238107.
%K A238108 nonn,easy
%O A238108 0,5
%A A238108 _N. J. A. Sloane_, Mar 01 2014