This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238123 #43 Jun 19 2018 05:56:45 %S A238123 1,0,1,0,1,1,0,3,0,1,0,7,2,0,1,0,20,5,0,0,1,0,56,14,5,0,0,1,0,182,35, %T A238123 14,0,0,0,1,0,589,132,28,14,0,0,0,1,0,2088,399,90,42,0,0,0,0,1,0,7522, %U A238123 1556,285,90,42,0,0,0,0,1,0,28820,5346,1232,165,132,0,0,0,0,0,1 %N A238123 Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having k largest parts, n >= k >= 0. %C A238123 Also number of standard Young tableaux with last row of length k. %H A238123 Joerg Arndt and Alois P. Heinz, <a href="/A238123/b238123.txt">Rows n = 0..60, flattened</a> %H A238123 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a> %e A238123 Triangle starts: %e A238123 00: 1; %e A238123 01: 0, 1; %e A238123 02: 0, 1, 1; %e A238123 03, 0, 3, 0, 1; %e A238123 04: 0, 7, 2, 0, 1; %e A238123 05: 0, 20, 5, 0, 0, 1; %e A238123 06: 0, 56, 14, 5, 0, 0, 1; %e A238123 07: 0, 182, 35, 14, 0, 0, 0, 1; %e A238123 08: 0, 589, 132, 28, 14, 0, 0, 0, 1; %e A238123 09: 0, 2088, 399, 90, 42, 0, 0, 0, 0, 1; %e A238123 10: 0, 7522, 1556, 285, 90, 42, 0, 0, 0, 0, 1; %e A238123 11: 0, 28820, 5346, 1232, 165, 132, 0, 0, 0, 0, 0, 1; %e A238123 12: 0, 113092, 21515, 4378, 737, 297, 132, 0, 0, 0, 0, 0, 1; %e A238123 13: 0, 464477, 82940, 17082, 3003, 572, 429, 0, 0, 0, 0, 0, 0, 1; %e A238123 ... %e A238123 The T(6,2)=14 ballot sequences of length 6 with 2 maximal elements are (dots for zeros): %e A238123 01: [ . . . . 1 1 ] %e A238123 02: [ . . . 1 . 1 ] %e A238123 03: [ . . . 1 1 . ] %e A238123 04: [ . . 1 . . 1 ] %e A238123 05: [ . . 1 . 1 . ] %e A238123 06: [ . . 1 1 . . ] %e A238123 07: [ . . 1 1 2 2 ] %e A238123 08: [ . . 1 2 1 2 ] %e A238123 09: [ . 1 . . . 1 ] %e A238123 10: [ . 1 . . 1 . ] %e A238123 11: [ . 1 . 1 . . ] %e A238123 12: [ . 1 . 1 2 2 ] %e A238123 13: [ . 1 . 2 1 2 ] %e A238123 14: [ . 1 2 . 1 2 ] %e A238123 The T(8,4)=14 such ballot sequences of length 8 and 4 maximal elements are: %e A238123 01: [ . . . . 1 1 1 1 ] %e A238123 02: [ . . . 1 . 1 1 1 ] %e A238123 03: [ . . . 1 1 . 1 1 ] %e A238123 04: [ . . . 1 1 1 . 1 ] %e A238123 05: [ . . 1 . . 1 1 1 ] %e A238123 06: [ . . 1 . 1 . 1 1 ] %e A238123 07: [ . . 1 . 1 1 . 1 ] %e A238123 08: [ . . 1 1 . . 1 1 ] %e A238123 09: [ . . 1 1 . 1 . 1 ] %e A238123 10: [ . 1 . . . 1 1 1 ] %e A238123 11: [ . 1 . . 1 . 1 1 ] %e A238123 12: [ . 1 . . 1 1 . 1 ] %e A238123 13: [ . 1 . 1 . . 1 1 ] %e A238123 14: [ . 1 . 1 . 1 . 1 ] %e A238123 These are the (reversed) Dyck words of semi-length 4. %p A238123 b:= proc(n, l) option remember; `if`(n<1, x^l[-1], %p A238123 b(n-1, [l[], 1]) +add(`if`(i=1 or l[i-1]>l[i], %p A238123 b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l))) %p A238123 end: %p A238123 T:= n->`if`(n=0, 1, (p->seq(coeff(p, x, i), i=0..n))(b(n-1, [1]))): %p A238123 seq(T(n), n=0..12); %p A238123 # second Maple program (counting SYT): %p A238123 h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ %p A238123 add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) %p A238123 end: %p A238123 g:= proc(n, i, l) `if`(n=0 or i=1, h([l[], 1$n])*x^`if`(n>0, 1, %p A238123 `if`(l=[], 0, l[-1])), g(n, i-1, l)+ %p A238123 `if`(i>n, 0, g(n-i, i, [l[], i]))) %p A238123 end: %p A238123 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(g(n, n, [])): %p A238123 seq(T(n), n=0..12); %t A238123 b[n_, l_List] := b[n, l] = If[n<1, x^l[[-1]], b[n-1, Append[l, 1]] + Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; T[n_] := If[n == 0, 1, Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, {1}]]]; Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 07 2015, translated from Maple *) %o A238123 (PARI) (A238123(n,k)=if(k, vecsum(apply(p->n!/Hook(Vecrev(p)), select(p->p[1]==k,partitions(n,[k,n])))), !n)); Hook(P,h=vector(P[1]),L=P[#P])={prod(i=1, L, h[i]=L-i+1)*prod(i=1,#P-1, my(D=-L+L=P[#P-i]); prod(k=0,L-1,h[L-k]+=min(k,D)+1))} \\ _M. F. Hasler_, Jun 03 2018 %Y A238123 The terms T(2*n,n) are the Catalan numbers (A000108). %Y A238123 Columns k=0-10 give: A000007, A238124, A244099, A244100, A244101, A244102, A244103, A244104, A244105, A244106, A244107. %Y A238123 Row sums give A000085. %Y A238123 Cf. A026794. %K A238123 nonn,tabl %O A238123 0,8 %A A238123 _Joerg Arndt_ and _Alois P. Heinz_, Feb 21 2014