This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238124 #27 Jun 04 2018 10:00:30 %S A238124 0,1,1,3,7,20,56,182,589,2088,7522,28820,113092,464477,1955760, %T A238124 8541860,38215077,176316928,832181774,4033814912,19973824386, %U A238124 101257416701,523648869394,2765873334372,14883594433742,81646343582385,455752361294076,2589414185398032 %N A238124 Number of ballot sequences of length n having exactly 1 largest part. %C A238124 Also number of standard Young tableaux with last row of length 1. %C A238124 Column k=1 of A238123. %C A238124 With different offset column k=2 of A238750. %H A238124 Joerg Arndt and Alois P. Heinz, <a href="/A238124/b238124.txt">Table of n, a(n) for n = 0..70</a> %e A238124 The a(5)=20 ballot sequences of length 5 with 1 maximal element are (dots for zeros): %e A238124 01: [ . . . . 1 ] %e A238124 02: [ . . . 1 . ] %e A238124 03: [ . . . 1 2 ] %e A238124 04: [ . . 1 . . ] %e A238124 05: [ . . 1 . 2 ] %e A238124 06: [ . . 1 1 2 ] %e A238124 07: [ . . 1 2 . ] %e A238124 08: [ . . 1 2 1 ] %e A238124 09: [ . . 1 2 3 ] %e A238124 10: [ . 1 . . . ] %e A238124 11: [ . 1 . . 2 ] %e A238124 12: [ . 1 . 1 2 ] %e A238124 13: [ . 1 . 2 . ] %e A238124 14: [ . 1 . 2 1 ] %e A238124 15: [ . 1 . 2 3 ] %e A238124 16: [ . 1 2 . . ] %e A238124 17: [ . 1 2 . 1 ] %e A238124 18: [ . 1 2 . 3 ] %e A238124 19: [ . 1 2 3 . ] %e A238124 20: [ . 1 2 3 4 ] %p A238124 h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ %p A238124 add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) %p A238124 end: %p A238124 g:= proc(n, i, l) `if`(n=0, 0, `if`(i=1, h([l[], 1$n]), %p A238124 add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))) %p A238124 end: %p A238124 a:= n-> g(n, n, []): %p A238124 seq(a(n), n=0..30); %t A238124 b[n_, l_List] := b[n, l] = If[n < 1, x^l[[-1]], b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[0] = 0; a[n_] := Coefficient[b[n - 1, {1}], x, 1]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 10 2015, after A238123 *) %o A238124 (PARI) A238124(n)=A238123(n,1) \\ _M. F. Hasler_, Jun 03 2018 %Y A238124 Cf. A238123, A238750. %K A238124 nonn %O A238124 0,4 %A A238124 _Joerg Arndt_ and _Alois P. Heinz_, Feb 21 2014