A238766 Number of ordered ways to write n = k + m (k > 0 and m > 0) such that prime(prime(k)) - prime(k) + 1, prime(prime(2*k+1)) - prime(2*k+1) + 1 and prime(prime(m)) - prime(m) + 1 are all prime.
0, 1, 1, 2, 3, 2, 4, 3, 2, 4, 1, 4, 3, 4, 6, 3, 6, 3, 3, 4, 3, 3, 2, 6, 4, 4, 5, 3, 3, 5, 4, 4, 4, 3, 4, 3, 6, 5, 2, 6, 3, 4, 6, 1, 3, 3, 6, 4, 6, 6, 4, 4, 5, 5, 1, 5, 3, 3, 6, 5, 6, 4, 7, 6, 8, 6, 8, 3, 9, 8, 9, 10, 8, 11, 6, 10, 10, 4, 5, 4
Offset: 1
Keywords
Examples
a(3) = 1 since 3 = 1 + 2 with prime(prime(1)) - prime(1) + 1 = prime(2) - 2 + 1 = 2, prime(prime(2*1+1)) - prime(2*1+1) + 1 = prime(5) - 5 + 1 = 7 and prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 3 all prime. a(371) = 1 since 371 = 66 + 305 with prime(prime(66)) - prime(66) + 1 = prime(317) - 317 + 1 = 2099 - 316 = 1783, prime(prime(2*66+1)) - prime(2*66+1) + 1 = prime(751) - 751 + 1 = 5701 - 750 = 4951 and prime(prime(305)) - prime(305) + 1 = prime(2011) - 2011 + 1 = 17483 - 2010 = 15473 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
pq[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1] a[n_]:=Sum[If[pq[k]&&pq[2k+1]&&pq[n-k],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments