cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238135 Decimal expansion of Euler's Multi-Zeta Sum S(2,3) = Sum_{n >= 1} (Sum_{k=1..n}((-1)^(k + 1)/k)^2/(n + 1)^3).

Original entry on oeis.org

1, 5, 6, 1, 6, 6, 9, 3, 3, 3, 8, 1, 1, 7, 6, 9, 1, 5, 8, 8, 1, 0, 3, 5, 9, 0, 9, 6, 8, 7, 9, 8, 8, 1, 9, 3, 6, 8, 5, 7, 7, 6, 7, 0, 9, 8, 4, 0, 3, 0, 3, 8, 7, 2, 9, 5, 7, 5, 2, 9, 3, 5, 4, 4, 9, 7, 0, 7, 5, 0, 3, 7, 4, 4, 0, 2, 9, 5, 7, 9, 1, 4, 5, 5, 2, 0, 5, 6, 5, 3, 7, 0, 9, 3, 5, 8, 1, 4, 7, 5
Offset: 0

Views

Author

Jean-François Alcover, Feb 18 2014

Keywords

Examples

			0.1561669333811769158810359096879881936857767...
		

Crossrefs

Cf. A218505.

Programs

  • Mathematica
    4*PolyLog[5, 1/2] - 1/30*Log[2]^5 - 17/32*Zeta[5] - 11/720*Pi^4*Log[2] + 7/4*Zeta[3]*Log[2]^2 + 1/18*Pi^2*Log[2]^3 - 1/8*Pi^2*Zeta[3] // RealDigits[#, 10, 100]& // First
  • PARI
    4*polylog(5,1/2)-1/30*log(2)^5-17/32*zeta(5) - 11/720*Pi^4*log(2) + 7/4*zeta(3)*log(2)^2 + 1/18*Pi^2*log(2)^3 - 1/8*Pi^2*zeta(3) \\ Charles R Greathouse IV, Jul 18 2014
    
  • SageMath
    RR = RealBallField(380)
    f = fast_callable(4*polylog(5, 1/2) - 1/30*log(2)^5 - 17/32*zeta(5) - 11/720*pi^4*log(2) + 7/4*zeta(3)*log(2)^2 + 1/18*pi^2*log(2)^3 - 1/8*pi^2*zeta(3), vars=[x], domain=RR)
    print([int(t) for t in str(f(0))[3:103]]) # Peter Luschny, May 06 2020