This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238147 #22 Dec 14 2018 16:09:33 %S A238147 1,11,26,126,191,341,516,1516,2081,2731,3206,4706,5631,7381,9256, %T A238147 19256,24821,30471,33946,40446,44171,48921,52796,67796,76221,85471, %U A238147 91846,109346,119971,138721,158096,258096,313661,369311 %N A238147 The number of P-positions in the game of Nim with up to five piles, allowing for piles of zero, such that the total number of objects in all piles doesn't exceed 2n. %C A238147 Partial sums of A238759. %H A238147 T. Khovanova and J. Xiong, <a href="http://arxiv.org/abs/1405.5942">Nim Fractals</a>, arXiv:1405.594291 [math.CO] (2014), p. 18 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Khovanova/khova6.html">J. Int. Seq. 17 (2014) # 14.7.8</a>. %F A238147 a(2n+1) = 11a(n) + 5a(n-1), a(2n+2) = a(n+1) + 15a(n). %e A238147 There is 1 position (0,0,0,0,0) with a total of zero. There are 10 positions with a total of 2 that are permutations of (0,0,0,1,1). Therefore, a(1)=11. %t A238147 Table[Length[ %t A238147 Select[Flatten[ %t A238147 Table[{n, k, j, i, BitXor[n, k, j, i]}, {n, 0, a}, {k, 0, a}, {j, %t A238147 0, a}, {i, 0, a}], 3], #[[5]] <= a &]], {a, 0, 35}] %t A238147 (* Second program: *) %t A238147 a[n_] := a[n] = Which[n <= 1, {1, 11}[[n+1]], OddQ[n], 11 a[(n-1)/2] + 5 a[(n-1)/2 - 1], EvenQ[n], a[(n-2)/2 + 1] + 15*a[(n-2)/2]]; %t A238147 Array[a, 34, 0] (* _Jean-François Alcover_, Dec 14 2018 *) %Y A238147 Cf. A238759 (first differences), A130665 (3 piles), A237686 (4 piles), A241523, A241731. %K A238147 nonn %O A238147 0,2 %A A238147 _Tanya Khovanova_ and _Joshua Xiong_, May 02 2014