cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238157 Reduced denominators of integral of the Stirling numbers of first kind.

This page as a plain text file.
%I A238157 #17 Dec 21 2014 05:09:49
%S A238157 1,1,2,1,2,3,1,1,1,4,1,1,3,2,5,1,1,3,4,1,6,1,1,3,4,1,2,7,1,1,1,1,1,6,
%T A238157 1,8,1,1,1,1,5,3,1,2,9,1,1,1,1,5,2,1,4,1,10,1,1,1,1,1,2,1,4,3,2,11,1,
%U A238157 1,1,1,1,3,1,8,3,1,1,12
%N A238157 Reduced denominators of integral of the Stirling numbers of first kind.
%C A238157 s(n,k), signed Stirling numbers of the first kind (A048994):
%C A238157 1,
%C A238157 0,  1,
%C A238157 0, -1,   1,
%C A238157 0,  2,  -3,  1,
%C A238157 0, -6,  11, -6, 1
%C A238157 etc.
%C A238157 The unsigned numbers, abs(s(n,k)), are the unsigned Stirling numbers of the first kind, A132393(n).
%C A238157 For the integration of these triangles we divide by A002260(n+1). For the first one the reduced numbers are
%C A238157 1,
%C A238157 0,  1/2,
%C A238157 0, -1/2,  1/3,
%C A238157 0,    1,   -1,  1/4,
%C A238157 0,   -3, 11/3, -3/2, 1/5,
%C A238157 etc.
%C A238157 Hence the denominators in the example.
%C A238157 Sums by rows: 1, 1/2, -1/6, 1/4, -19/30, 27/12 = 9/4, = (-1)^(n+1)*A141417(n)/A002790(n) = A006232(n)/A006233(n) (*).
%C A238157 Because the integration is between 0 and 1, the fractions appear in a numerical Adams integration with the denominators multiplied by n!, i.e., 1, 1/2, -1/12, 1/24, -19/720, 27/1440, ... . Reference, array p. 36.
%C A238157 (*) The Cauchy numbers of the first type or the Bernoulli numbers of the second kind.
%C A238157 Without signs, the row sums are 1, 1/2, 5/6, 9/4, 251/30, 475/12, ... = A002657(n)/A002790(n), Cauchy numbers of the second type. See Nørlund numbers, 1924.
%D A238157 P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969 (see array p. 56).
%D A238157 N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924
%F A238157 Denominators of reduced A132393(n)/A002260(n+1).
%e A238157 Denominators triangle (a(n)):
%e A238157 1,
%e A238157 1, 2
%e A238157 1, 2, 3,
%e A238157 1, 1, 1, 4,
%e A238157 1, 1, 3, 2, 5,
%e A238157 1, 1, 3, 4, 1, 6,
%e A238157 1, 1, 3, 4, 1, 2, 7,
%e A238157 etc.
%e A238157 The Least Common Multiples are A002790. The second column is A141044(n).
%t A238157 Table[StirlingS1[n, k]/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 21 2014 *)
%Y A238157 Cf. A091137.
%K A238157 nonn,frac
%O A238157 0,3
%A A238157 _Paul Curtz_, Feb 18 2014