A238183 Decimal expansion of sum_(n>=1) H(n)^2/n^7 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,7)).
1, 0, 1, 9, 4, 8, 3, 4, 9, 7, 4, 9, 4, 3, 8, 2, 2, 8, 6, 2, 0, 6, 4, 9, 6, 6, 7, 5, 9, 2, 8, 1, 2, 6, 5, 1, 5, 0, 6, 1, 8, 9, 4, 4, 2, 2, 9, 0, 4, 2, 8, 8, 8, 6, 3, 3, 3, 4, 0, 1, 4, 6, 3, 1, 6, 1, 9, 8, 5, 3, 7, 4, 0, 0, 6, 8, 7, 3, 5, 5, 5, 0, 0, 2, 7, 3, 1, 4, 6, 2, 1, 0, 0, 3, 1, 6, 6, 5, 5, 3
Offset: 1
Examples
1.019483497494382286206496675928126515...
Links
- Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 24.
Programs
-
Mathematica
Zeta[3]^3/3 - 5/2*Zeta[4]*Zeta[5] - 7/2*Zeta[3]*Zeta[6] - Zeta[2]*Zeta[7] + 55/6*Zeta[9] // RealDigits[#, 10, 100]& // First
Formula
zeta(3)^3/3-5/2*zeta(4)*zeta(5)-7/2*zeta(3)*zeta(6)-zeta(2)*zeta(7)+55/6*zeta(9).