cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238184 Sum of the squares of numbers of nonconsecutive chess tableaux over all partitions of n.

This page as a plain text file.
%I A238184 #19 Jul 19 2017 15:48:40
%S A238184 1,1,1,1,2,2,4,7,16,37,107,282,1020,2879,12507,39347,179231,687974,
%T A238184 3225246,14955561,75999551,392585613,2271201137,12183159188,
%U A238184 81562521256,446611878413,3336304592155,19202329389234,152803821604669,958953289839930,7835058287650579
%N A238184 Sum of the squares of numbers of nonconsecutive chess tableaux over all partitions of n.
%C A238184 A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.
%H A238184 Alois P. Heinz, <a href="/A238184/b238184.txt">Table of n, a(n) for n = 0..50</a>
%H A238184 T. Y. Chow, H. Eriksson and C. K. Fan, <a href="http://www.combinatorics.org/Volume_11/Abstracts/v11i2a3.html">Chess tableaux</a>, Elect. J. Combin., 11 (2) (2005), #A3.
%H A238184 Jonas Sjöstrand, <a href="https://arxiv.org/abs/math/0309231v3">On the sign-imbalance of partition shapes</a>, arXiv:math/0309231v3 [math.CO], 2005.
%H A238184 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%F A238184 a(n) = Sum_{lambda : partitions(n)} ncc(lambda)^2, where ncc(k) is the number of nonconsecutive chess tableaux of shape k.
%e A238184 a(7) = 1 + 2^2 + 1 + 1 = 7:
%e A238184 .
%e A238184 : [1111111] :   [22111]    : [3211]  :  [322]  : <- shapes
%e A238184 :-----------+--------------+---------+---------:
%e A238184 :    [1]    : [1 6]  [1 4] : [1 4 7] : [1 4 7] :
%e A238184 :    [2]    : [2 7]  [2 5] : [2 5]   : [2 5]   :
%e A238184 :    [3]    : [3]    [3]   : [3]     : [3 6]   :
%e A238184 :    [4]    : [4]    [6]   : [6]     :         :
%e A238184 :    [5]    : [5]    [7]   :         :         :
%e A238184 :    [6]    :              :         :         :
%e A238184 :    [7]    :              :         :         :
%p A238184 b:= proc(l, t) option remember; local n, s;
%p A238184       n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and
%p A238184       irem(s+i-l[i], 2)=1 and l[i]>`if`(i=n, 0, l[i+1]), b(subsop(
%p A238184       i=`if`(i=n and l[n]=1, [][], l[i]-1), l), i), 0), i=1..n))
%p A238184     end:
%p A238184 g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0)^2, `if`(i<1, 0,
%p A238184                  add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
%p A238184 a:= n-> g(n, n, []):
%p A238184 seq(a(n), n=0..32);
%t A238184 b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Total[l]}; If[s == 0, 1, Sum[If[t != i && Mod[s+i-l[[i]], 2] == 1 && l[[i]] > If[i==n, 0, l[[i+1]]], b[ReplacePart[l, i -> If[i==n && l[[n]]==1, Nothing, l[[i]]-1]], i], 0], {i, 1, n}]]]; g[n_, i_, l_] := g[n, i, l] = If[n==0 || i==1, b[Join[l, Array[1&, n]], 0]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 32}] (* _Jean-François Alcover_, Feb 17 2017, translated from Maple *)
%Y A238184 Cf. A108774, A214088, A214459, A214460, A214461, A238020.
%K A238184 nonn
%O A238184 0,5
%A A238184 _Alois P. Heinz_, Feb 19 2014