cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238186 Primes with odd Hamming weight that as polynomials over GF(2) are reducible.

Original entry on oeis.org

79, 107, 127, 151, 173, 179, 181, 199, 223, 227, 233, 251, 271, 307, 331, 367, 409, 421, 431, 439, 443, 457, 491, 521, 541, 569, 577, 641, 653, 659, 709, 727, 733, 743, 809, 823, 829, 919, 941, 947, 991, 997, 1009, 1021, 1087, 1109, 1129, 1171, 1187, 1201, 1213, 1231, 1249, 1259, 1301, 1321, 1327, 1361, 1373
Offset: 1

Views

Author

Joerg Arndt, Feb 19 2014

Keywords

Comments

Subsequence of A091209 (see comments there).

Examples

			79 is a term because 79 = 1001111_2 which corresponds to the polynomial x^6 + x^3 + x^2 + x + 1, but over GF(2) we have x^6 + x^3 + x^2 + x + 1 = (x^2 + x + 1)*(x^4 + x^3 + 1). - _Jianing Song_, May 10 2021
		

Crossrefs

Intersection of A000069 and A091209.
Intersection of A027697 and A091242.
Equals the set difference of A027697 and A091206.

Programs

  • PARI
    forprime(p=2, 10^4, if( (hammingweight(p)%2==1) && ! polisirreducible( Mod(1,2)*Pol(binary(p)) ), print1(p,", ") ) );