A238186 Primes with odd Hamming weight that as polynomials over GF(2) are reducible.
79, 107, 127, 151, 173, 179, 181, 199, 223, 227, 233, 251, 271, 307, 331, 367, 409, 421, 431, 439, 443, 457, 491, 521, 541, 569, 577, 641, 653, 659, 709, 727, 733, 743, 809, 823, 829, 919, 941, 947, 991, 997, 1009, 1021, 1087, 1109, 1129, 1171, 1187, 1201, 1213, 1231, 1249, 1259, 1301, 1321, 1327, 1361, 1373
Offset: 1
Keywords
Examples
79 is a term because 79 = 1001111_2 which corresponds to the polynomial x^6 + x^3 + x^2 + x + 1, but over GF(2) we have x^6 + x^3 + x^2 + x + 1 = (x^2 + x + 1)*(x^4 + x^3 + 1). - _Jianing Song_, May 10 2021
Links
Crossrefs
Programs
-
PARI
forprime(p=2, 10^4, if( (hammingweight(p)%2==1) && ! polisirreducible( Mod(1,2)*Pol(binary(p)) ), print1(p,", ") ) );
Comments