This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238203 #25 Dec 13 2021 14:36:56 %S A238203 1,4,9,16,25,36,64,100,144,169,196,225,324,400,441,484,529,576,625, %T A238203 841,900,961,1089,1444,1521,1849,2209,2601,2704,2809,3025,3136,3249, %U A238203 3364,3721,3844,4096,4225,4356,4489,5476,5625,5776,6241,7056,7921,8464,8836,9025 %N A238203 Squares s such that s^2+s+41 is prime. %C A238203 n^2+n+41: Euler’s prime generating polynomial. %C A238203 First 6 terms in the sequence are first 6 consecutive squares. %H A238203 K. D. Bajpai, <a href="/A238203/b238203.txt">Table of n, a(n) for n = 1..4285</a> %e A238203 9 is in the sequence because 9 = 3^2 and 9^2+9+41 = 131 is prime. %e A238203 36 is in the sequence because 36 = 6^2 and 36^2+36+41 = 1373 is prime. %p A238203 with(numtheory):KD := proc() local a,b; a:=(n^2);b:=a^2+a+41; if isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..500); %t A238203 Select[Table[k = n^2, {n, 100}], PrimeQ[#^2 + # + 41] &] (* or *) c = 0; Do[k = n^2; If[PrimeQ[k^2 + k + 41], c = c + 1; Print[c, " ", k]], {n, 1, 10000}]; %t A238203 Select[Range[100]^2,PrimeQ[#^2+#+41]&] (* _Harvey P. Dale_, Dec 13 2021 *) %Y A238203 Cf. A000040, A097823, A238242. %K A238203 nonn %O A238203 1,2 %A A238203 _K. D. Bajpai_, Feb 20 2014