This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238208 #36 Mar 19 2021 08:48:30 %S A238208 0,1,0,0,0,0,1,1,2,2,3,3,4,4,5,6,7,8,10,12,14,17,20,24,28,33,38,45,52, %T A238208 60,69,80,91,105,120,137,156,178,202,230,261,295,334,378,426,481,542, %U A238208 609,685,769,862,966,1082,1209,1351,1508,1681,1873,2086,2319,2578 %N A238208 The total number of 1's in all partitions of n into an odd number of distinct parts. %C A238208 The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n). %C A238208 Or: the number of partitions of n-1 into an even number of distinct parts >=2. - _R. J. Mathar_, May 11 2016 %H A238208 Alois P. Heinz, <a href="/A238208/b238208.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from Andrew Howroyd) %F A238208 a(n) = Sum_{j=1..round(n/2)} A067661(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067659(n-2*j). %F A238208 G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) + (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n). %F A238208 a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, May 17 2020 %F A238208 From _Peter Bala_, Feb 02 2021: (Start) %F A238208 a(n+1) = d(n) - ( d(n-1) + d(n-3) ) + ( d(n-4) + d(n-6) + d(n-8) ) - ( d(n-9) + d(n-11) + d(n-13) + d(n-15) ) + ( d(n-16) + d(n-18) + d(n-20) + d(n-22) + d(n-24) ) - ( d(n-25) + d(n-27) + d(n-29) + d(n-31) + d(n-33) + d(n-35) ) + ..., where d(n) = A000009(n) is the number of partitions of n into distinct parts, with the convention that d(n) = 0 for n < 0. %F A238208 G.f.: x/(1 - x^2)*Sum_{n >= 0} (-1)^n*x^((n^2+n+1-(-1)^n)/2)/Product_{k = 1..n} 1 - x^k. %F A238208 Alternative g.f.: ( Product_{k >= 1} 1 + x^k ) * x*Sum_{n >= 0} (-1)^n*x^(n^2)*(1 - x^(2*n+2))/(1 - x^2). %F A238208 Faster converging g.f. (conjecture): Sum_{n >= 0} x^((n+1)*(2*n+1))/ Product_{k = 1..2*n} 1 - x^k. (End) %e A238208 a(10) = 3 because the partitions in question are: 7+2+1, 6+3+1, 5+4+1. %p A238208 A238208 := proc(n) %p A238208 local a,L,Lset; %p A238208 a := 0 ; %p A238208 L := combinat[firstpart](n) ; %p A238208 while true do %p A238208 # check that parts are distinct %p A238208 Lset := convert(L,set) ; %p A238208 if nops(L) = nops(Lset) then %p A238208 # check that number is odd %p A238208 if type(nops(L),'odd') then %p A238208 if 1 in Lset then %p A238208 a := a+1 ; %p A238208 end if; %p A238208 end if; %p A238208 end if; %p A238208 L := combinat[nextpart](L) ; %p A238208 if L = FAIL then %p A238208 return a; %p A238208 end if; %p A238208 end do: %p A238208 a ; %p A238208 end proc: # _R. J. Mathar_, May 11 2016 %p A238208 # second Maple program: %p A238208 b:= proc(n, i, t) option remember; `if`(n=0, t, %p A238208 `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t))) %p A238208 end: %p A238208 a:= n-> b(n-1, 2, 1): %p A238208 seq(a(n), n=0..100); # _Alois P. Heinz_, May 01 2020 %t A238208 b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i+1, t] + b[n-i, i+1, 1-t]]]; %t A238208 a[n_] := b[n-1, 2, 1]; %t A238208 a /@ Range[0, 100] (* _Jean-François Alcover_, May 17 2020, after _Alois P. Heinz_ *) %o A238208 (PARI) seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) + eta(x + A)/(1-x))/2, -(n+1))} \\ _Andrew Howroyd_, May 01 2020 %Y A238208 Column k=1 of A238450. %Y A238208 Cf. A067659, A067661, A133280. %K A238208 nonn,easy %O A238208 0,9 %A A238208 _Mircea Merca_, Feb 20 2014 %E A238208 a(51)-a(60) from _R. J. Mathar_, May 11 2016