This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238218 #11 Jul 05 2025 08:53:13 %S A238218 0,0,0,0,1,1,0,1,1,1,2,2,2,3,4,5,6,7,9,10,12,15,17,20,24,27,32,38,43, %T A238218 50,59,67,77,90,102,117,135,153,175,200,226,257,292,330,373,422,475, %U A238218 535,603,677,760,853,955,1069,1196,1336,1491,1663,1853,2063,2295 %N A238218 The total number of 3's in all partitions of n into an even number of distinct parts. %C A238218 The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n). %H A238218 Andrew Howroyd, <a href="/A238218/b238218.txt">Table of n, a(n) for n = 0..1000</a> %F A238218 a(n) = Sum_{j=1..round(n/6)} A067659(n-(2*j-1)*3) - Sum_{j=1..floor(n/6)} A067661(n-6*j). %F A238218 G.f.: (1/2)*(x^3/(1+x^3))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^3/(1-x^3))*(Product_{n>=1} 1 - x^n). %F A238218 a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 05 2025 %e A238218 a(13) = 3 because the partitions in question are: 10+3, 7+3+2+1, 5+4+3+1. %t A238218 nmax = 100; With[{k=3}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 05 2025 *) %o A238218 (PARI) seq(n)={my(A=O(x^(n-2))); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x^3)) - eta(x + A)/(1-x^3))/2, -(n+1))} \\ _Andrew Howroyd_, May 01 2020 %Y A238218 Column k=3 of A238451. %Y A238218 Cf. A067659, A067661. %K A238218 nonn %O A238218 0,11 %A A238218 _Mircea Merca_, Feb 20 2014 %E A238218 Terms a(51) and beyond from _Andrew Howroyd_, May 01 2020