cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238226 Numbers k such that if x = sigma(k) + tau(k) - k then k = sigma(x) + tau(x) - x.

Original entry on oeis.org

1, 3, 14, 52, 130, 144, 184, 274, 300, 586, 656, 8648, 10434, 11470, 12008, 15774, 17034, 18802, 19270, 21032, 22088, 22184, 23288, 34688, 35394, 36872, 38744, 39790, 65324, 65392, 67628, 68476, 153868, 163676, 188468, 198628, 254526, 263890, 379026, 463390
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2014

Keywords

Comments

A083874 is a subset of this sequence: it lists the fixed points of the transform n -> sigma(n)+tau(n)-n.

Examples

			Fixed points: 1, 3, 14, 52, 130, 184, 656, 8648, 12008, 34688, ...
sigma(144) = 403, tau(144) = 15 and 403 + 15 - 144 = 274.
sigma(274) = 414, tau(274) = 4 and 414 + 4 - 274 = 144.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q)local a,n;
    for n from 1 to q do a:=sigma(n)+tau(n)-n;
    if sigma(a)+tau(a)-a=n then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    f[n_] := DivisorSigma[0, n] + DivisorSigma[1, n] - n; s={}; Do[m = f[n]; If[f[m] == n, AppendTo[s, n]], {n, 1, 500000}]; s (* Amiram Eldar, Jul 12 2019 *)

A238229 Numbers n such that if x = sigma(n)-phi(n)+tau(n)-n then n = sigma(x)-phi(x)+tau(x)-x.

Original entry on oeis.org

2, 4, 20, 66, 342, 34092, 40842, 41922, 46242, 55422, 207624, 259448, 533172, 547300, 571992, 667408, 1531032, 1786288, 10983114, 114013752, 133506680, 323277822, 347360860, 386144360, 387415458, 459603716, 476991704, 1443279992, 1539484232, 15537978552
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2014

Keywords

Comments

The fixed points (terms with x = n) are 2, 4, 20, 66, 342, 41922, 10983114, ... - Amiram Eldar, Mar 31 2019

Examples

			Fixed points: 2, 4, 20, 66, 342, 41922, ...
Amicable pairs: (34092, 40842), (46242, 55422), (207624, 259448), ...
sigma(34092) = 86268, phi(34092) = 11352, tau(34092) = 18 and 86268 - 11352 + 18 - 34092 = 40842.
sigma(40842) = 88530, phi(40842) = 13608, tau(40842) = 12 and 88530 - 13608 + 12 - 40842 = 34092.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q)local a,n;
    for n from 1 to q do a:=sigma(n)-phi(n)+tau(n)-n;
    if a>0 and sigma(a)-phi(a)+tau(a)-a=n then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    f[n_] := If[n > 0, DivisorSigma[1, n] - EulerPhi[n] + DivisorSigma[0, n] - n, 0]; s={}; Do[ If[f[f[n]] == n, AppendTo[s, n]], {n, 1, 60000}]; s (* Amiram Eldar, Mar 31 2019 *)

Extensions

a(11)-a(29) from Amiram Eldar, Mar 31 2019
a(30) from Giovanni Resta, Apr 04 2019

A238228 Numbers n such that if x=sigma(n)+phi(n)-tau(n)-n then n=sigma(x)+phi(x)-tau(x)-x.

Original entry on oeis.org

12, 14, 27, 125, 127
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2014

Keywords

Comments

a(6) > 2*10^11, if it exists. - Giovanni Resta, Apr 10 2019

Examples

			Fixed points: 27,...
sigma(12) = 28, phi(12) = 4, tau(12) = 6 and 28 + 4 - 6 - 12 = 14.
sigma(14) = 24, phi(14) = 6, tau(14) = 4 and 24 + 6 - 4 - 14 = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q)local a,n;
    for n from 1 to q do a:=sigma(n)+phi(n)-tau(n)-n;
    if sigma(a)+phi(a)-tau(a)-a=n then print(n);
    fi; od; end: P(10^6);
Showing 1-3 of 3 results.