cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238237 Numbers which when chopped into two parts with equal length, added and squared result in the same number.

This page as a plain text file.
%I A238237 #44 Jan 02 2025 12:47:22
%S A238237 81,2025,3025,9801,494209,998001,24502500,25502500,52881984,60481729,
%T A238237 99980001,6049417284,6832014336,9048004641,9999800001,101558217124,
%U A238237 108878221089,123448227904,127194229449,152344237969,213018248521,217930248900,249500250000,250500250000
%N A238237 Numbers which when chopped into two parts with equal length, added and squared result in the same number.
%C A238237 Yet another variant of the Kaprekar numbers A006886. - _N. J. A. Sloane_, Aug 06 2017
%C A238237 From _Bernard Schott_, Jan 21 2022: (Start)
%C A238237 Three subsequences:
%C A238237 -> {(10^m-1)^2, m >= 1} = A059988 \ {0}; see example 9801.
%C A238237 -> {(10^m-1)^2 * 10^(2*m) / 4, m >= 1} = A350869 \ {0}; see example 2025.
%C A238237 -> {(10^m+1)^2 * 10^(2*m) / 4, m >= 1} = A038544 \ {1}, see example 3025. (End)
%H A238237 Rémy Sigrist, <a href="/A238237/b238237.txt">Table of n, a(n) for n = 1..25000</a>
%F A238237 a(n) = A290449(n)^2. - _Bernard Schott_, Jan 20 2022
%e A238237 2025 = (20 + 25)^2, so 2025 is in the sequence.
%e A238237 3025 = (30 + 25)^2, so 3025 is in the sequence.
%e A238237 9801 = (98 + 01)^2, so 9801 is in the sequence.
%t A238237 Select[Range[600000]^2, EvenQ[len=IntegerLength[#]] && # == (Mod[#,10^(len/2)] + Floor[#/10^(len/2)])^2 &] (* _Stefano Spezia_, Jan 01 2025 *)
%o A238237 (PARI) forstep(m=1, 7, 2, p=10^((m+1)/2); for(n=10^m, 10^(m+1)-1, d=lift(Mod(n, p)); if(((n-d)/p+d)^2==n, print1(n, ", "))));
%Y A238237 Subsequence of A102766.
%Y A238237 Subsequence: A350870.
%Y A238237 Cf. A006886, A038544, A059988, A350869.
%Y A238237 For square roots see A290449.
%K A238237 nonn,base
%O A238237 1,1
%A A238237 _Arkadiusz Wesolowski_, Feb 20 2014
%E A238237 a(12)-a(24) from _Donovan Johnson_, Feb 22 2014