A238240 Positive integers n such that x^2 - 20xy + y^2 + n = 0 has integer solutions.
18, 35, 50, 63, 72, 74, 83, 90, 95, 98, 99, 107, 140, 162, 171, 200, 215, 227, 252, 266, 275, 288, 296, 315, 332, 347, 359, 360, 362, 371, 380, 387, 392, 395, 396, 407, 428, 450, 491, 495, 530, 539, 560, 567, 602, 623, 626, 635, 648, 666, 684, 695, 711, 722, 743, 747, 755, 770, 791, 794, 800, 810
Offset: 1
Keywords
Examples
63 is in the sequence because x^2 - 20xy + y^2 + 63 = 0 has integer solutions, for example (x, y) = (1, 16).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= t -> [isolve(99*y^2 - z^2 = t)] <> []: select(filter, [$1..1000]); # Robert Israel, Oct 22 2024
Extensions
Corrected by Robert Israel, Oct 22 2024
Comments