A238249 Number of (n+1)X(2+1) 0..1 arrays with 2X2 subblock sums lexicographically nondecreasing columnwise and rowwise.
44, 180, 804, 2818, 9991, 29995, 90225, 241945, 649320, 1605951, 3974215, 9269399, 21628177, 48322967, 107991481, 233776405, 506133563, 1070574873, 2264593031, 4710021487, 9796211590, 20129009598, 41359935334, 84255978136, 171637137305
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0....0..1..0....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0 ..1..0..1....0..0..0....1..1..1....0..0..0....0..0..1....0..0..1....0..0..0 ..1..0..1....1..0..1....0..1..0....0..0..1....0..0..1....1..0..0....0..0..1 ..1..1..1....0..0..1....1..1..1....1..0..0....1..1..0....1..1..1....1..1..0 ..0..1..1....1..1..0....0..1..1....0..1..1....0..1..1....1..1..0....1..1..1 ..1..1..1....0..1..1....1..1..1....0..1..1....1..1..0....1..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) +16*a(n-2) -82*a(n-3) -99*a(n-4) +774*a(n-5) +196*a(n-6) -4456*a(n-7) +1106*a(n-8) +17464*a(n-9) -10080*a(n-10) -49212*a(n-11) +40922*a(n-12) +102532*a(n-13) -108728*a(n-14) -159592*a(n-15) +207747*a(n-16) +184428*a(n-17) -296048*a(n-18) -153442*a(n-19) +318857*a(n-20) +83878*a(n-21) -259308*a(n-22) -19872*a(n-23) +157052*a(n-24) -10232*a(n-25) -68768*a(n-26) +12128*a(n-27) +20592*a(n-28) -5472*a(n-29) -3776*a(n-30) +1280*a(n-31) +320*a(n-32) -128*a(n-33)
Comments