cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238278 a(n) = |{0 < k < n: the number of primes in the interval ((k-1)*n, k*n] and the number of primes in the interval (k*n, (k+1)*n] are both prime}|.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 2, 7, 6, 8, 4, 9, 4, 9, 8, 1, 1, 3, 5, 4, 6, 3, 4, 4, 6, 3, 11, 8, 8, 7, 7, 12, 9, 4, 8, 9, 12, 8, 12, 8, 7, 6, 7, 7, 9, 4, 8, 9, 11, 5, 6, 3, 11, 2, 5, 14, 8, 8, 11, 2, 1, 11, 4, 6, 4, 5, 4, 1, 9, 5, 2, 10, 5, 4, 9, 10, 11, 6, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 22 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3.
(ii) For any integer n > 3, there is a prime p < n such that the number of primes in the interval ((p-1)*n, p*n) is a prime.
We have verified part (i) for n up to 150000.
See also A238277 and A238281 for related conjectures.

Examples

			a(17) = 1 since the interval (9*17, 10*17] contains exactly 3 primes with 3 prime, and the interval (10*17, 11*17] contains exactly 3 primes with 3 prime.
		

Crossrefs

Programs

  • Mathematica
    d[k_,n_]:=PrimePi[k*n]-PrimePi[(k-1)n]
    a[n_]:=Sum[If[PrimeQ[d[k,n]]&&PrimeQ[d[k+1,n]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]