cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238279 Triangle read by rows: T(n,k) is the number of compositions of n into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=A004523(n-1).

This page as a plain text file.
%I A238279 #41 Jul 17 2024 07:48:32
%S A238279 1,1,2,2,2,3,4,1,2,10,4,4,12,14,2,2,22,29,10,1,4,26,56,36,6,3,34,100,
%T A238279 86,31,2,4,44,148,200,99,16,1,2,54,230,374,278,78,8,6,58,322,680,654,
%U A238279 274,52,2,2,74,446,1122,1390,814,225,22,1,4,88,573,1796,2714,2058,813,136,10,4,88,778,2694,4927
%N A238279 Triangle read by rows: T(n,k) is the number of compositions of n into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=A004523(n-1).
%C A238279 Same as A238130, with zeros omitted.
%C A238279 Last elements in rows are 1, 1, 2, 2, 1, 4, 2, 1, 6, 2, 1, 8, ... with g.f. -(x^6+x^4-2*x^2-x-1)/(x^6-2*x^3+1).
%C A238279 For n > 0, also the number of compositions of n with k + 1 runs. - _Gus Wiseman_, Apr 10 2020
%H A238279 Joerg Arndt and Alois P. Heinz, <a href="/A238279/b238279.txt">Rows n = 0..180, flattened</a>
%F A238279 G.f.: A(x,y) = ( 1 + Sum_{i>0} ((x^i)*(1 - y)/(1 + y*x^i - x^i)) )/( 1 - Sum_{i>0} ((y*x^i)/(1 + y*x^i - x^i)) ). - _John Tyler Rascoe_, Jul 10 2024
%e A238279 Triangle starts:
%e A238279   00:  1;
%e A238279   01:  1;
%e A238279   02:  2;
%e A238279   03:  2,   2;
%e A238279   04:  3,   4,   1;
%e A238279   05:  2,  10,   4;
%e A238279   06:  4,  12,  14,    2;
%e A238279   07:  2,  22,  29,   10,    1;
%e A238279   08:  4,  26,  56,   36,    6;
%e A238279   09:  3,  34, 100,   86,   31,    2;
%e A238279   10:  4,  44, 148,  200,   99,   16,    1;
%e A238279   11:  2,  54, 230,  374,  278,   78,    8;
%e A238279   12:  6,  58, 322,  680,  654,  274,   52,    2;
%e A238279   13:  2,  74, 446, 1122, 1390,  814,  225,   22,   1;
%e A238279   14:  4,  88, 573, 1796, 2714, 2058,  813,  136,  10;
%e A238279   15:  4,  88, 778, 2694, 4927, 4752, 2444,  618,  77,  2;
%e A238279   16:  5, 110, 953, 3954, 8531, 9930, 6563, 2278, 415, 28, 1;
%e A238279   ...
%e A238279 Row n=5 is 2, 10, 4 because in the 16 compositions of 5
%e A238279   ##:  [composition]  no. of changes
%e A238279   01:  [ 1 1 1 1 1 ]   0
%e A238279   02:  [ 1 1 1 2 ]   1
%e A238279   03:  [ 1 1 2 1 ]   2
%e A238279   04:  [ 1 1 3 ]   1
%e A238279   05:  [ 1 2 1 1 ]   2
%e A238279   06:  [ 1 2 2 ]   1
%e A238279   07:  [ 1 3 1 ]   2
%e A238279   08:  [ 1 4 ]   1
%e A238279   09:  [ 2 1 1 1 ]   1
%e A238279   10:  [ 2 1 2 ]   2
%e A238279   11:  [ 2 2 1 ]   1
%e A238279   12:  [ 2 3 ]   1
%e A238279   13:  [ 3 1 1 ]   1
%e A238279   14:  [ 3 2 ]   1
%e A238279   15:  [ 4 1 ]   1
%e A238279   16:  [ 5 ]   0
%e A238279 there are 2 with no changes, 10 with one change, and 4 with two changes.
%p A238279 b:= proc(n, v) option remember; `if`(n=0, 1, expand(
%p A238279       add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n)))
%p A238279     end:
%p A238279 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
%p A238279 seq(T(n), n=0..14);
%t A238279 b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Feb 11 2015, after Maple *)
%t A238279 Table[If[n==0,1,Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#]]==k+1&]]],{n,0,12},{k,0,If[n==0,0,Floor[2*(n-1)/3]]}] (* _Gus Wiseman_, Apr 10 2020 *)
%o A238279 (PARI)
%o A238279 T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N),h=(1+ sum(i=1,N,(x^i-y*x^i)/(1+y*x^i-x^i)))/(1-sum(i=1,N, y*x^i/(1+y*x^i-x^i)))); for(n=0,N-1, print(Vecrev(polcoeff(h,n))))}
%o A238279 T_xy(16) \\ _John Tyler Rascoe_, Jul 10 2024
%Y A238279 Columns k=0-10 give: A000005 (for n>0), 2*A002133, A244714, A244715, A244716, A244717, A244718, A244719, A244720, A244721, A244722.
%Y A238279 Row lengths are A004523.
%Y A238279 Row sums are A011782.
%Y A238279 The version counting adjacent equal parts is A106356.
%Y A238279 The version for ascents/descents is A238343.
%Y A238279 The version for weak ascents/descents is A333213.
%Y A238279 The k-th composition in standard-order has A124762(k) adjacent equal parts, A124767(k) maximal runs, A333382(k) adjacent unequal parts, and A333381(k) maximal anti-runs.
%Y A238279 Cf. A064113, A333214, A333216.
%K A238279 nonn,tabf
%O A238279 0,3
%A A238279 _Joerg Arndt_ and _Alois P. Heinz_, Feb 22 2014