cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238299 Second convolution of A107841.

This page as a plain text file.
%I A238299 #12 Feb 27 2014 09:49:22
%S A238299 1,4,24,164,1208,9348,74920,616420,5176296,44182916,382205048,
%T A238299 3343343268,29523386968,262826367748,2356256046216,21254326842596,
%U A238299 192766180154120,1756758963727620,16079466335134168,147748236828875428,1362397741935948024,12603116216808465284,116929440001191010664
%N A238299 Second convolution of A107841.
%H A238299 Fung Lam, <a href="/A238299/b238299.txt">Table of n, a(n) for n = 0..1000</a>
%F A238299 G.f.: (G.f. of A107841)^2.
%F A238299 Recurrence: (n+2)*a(n) = (4-n)*a(n-4) + 4*(2*n-5)*a(n-3) + 18*(n-1)*a(n-2) + 4*(2*n+1)*a(n-1), n>=4.
%F A238299 Recurrence (of order 2): (n+2)*(2*n-1)*a(n) = 4*(5*n^2-2)*a(n-1) - (n-2)*(2*n+1)*a(n-2). - _Vaclav Kotesovec_, Feb 27 2014
%F A238299 a(n) ~ sqrt(360+147*sqrt(6)) * (5+2*sqrt(6))^n / (9 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 27 2014
%t A238299 CoefficientList[Series[((1 + x - Sqrt[1 - 10*x + x^2])/(6*x))^2, {x, 0, 100}], x] (* _Vaclav Kotesovec_, Feb 27 2014 *)
%Y A238299 Cf. A107841, A238300.
%K A238299 nonn,easy
%O A238299 0,2
%A A238299 _Fung Lam_, Feb 25 2014