cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238300 Fourth convolution of A107841.

This page as a plain text file.
%I A238300 #10 Feb 27 2014 09:49:42
%S A238300 1,8,64,520,4304,36232,309504,2677128,23405520,206522888,1836913216,
%T A238300 16452907016,148274884688,1343569891720,12233903203328,
%U A238300 111883174439304,1027244073375312,9465236716896264,87498251217286720,811252609543727624,7542152541765899728,70294794046928531848
%N A238300 Fourth convolution of A107841.
%H A238300 Fung Lam, <a href="/A238300/b238300.txt">Table of n, a(n) for n = 0..1000</a>
%F A238300 G.f.: (G.f. of A107841)^4.
%F A238300 Recurrence: (n+4)*a(n) = (8-n)*a(n-8) + 4*(4*n-26)*a(n-7) + 64*(5-n)*a(n-6) + 8*(2*n-7)*a(n-5) + 194*(n-2)*a(n-4) + 8*(2*n-1)*a(n-3) - 64*(n+1)*a(n-2) + 8*(2*n+5)*a(n-1), n>=8.
%F A238300 Recurrence (of order 2): n*(n+4)*(2*n+1)*a(n) = 20*n*(n+1)*(n+2)*a(n-1) - (n-2)*(n+2)*(2*n+3)*a(n-2). - _Vaclav Kotesovec_, Feb 27 2014
%F A238300 a(n) ~ 2*sqrt(35280+14403*sqrt(6)) * (5+2*sqrt(6))^n / (27 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 27 2014
%t A238300 CoefficientList[Series[((1+x-Sqrt[1-10*x+x^2])/(6*x))^4,{x,0,20}],x] (* _Vaclav Kotesovec_, Feb 27 2014 *)
%Y A238300 Cf. A107841, A238299.
%K A238300 nonn,easy
%O A238300 0,2
%A A238300 _Fung Lam_, Feb 25 2014