A238325 Array: row n gives the number of occurrences of each possible antidiagonal partition of n, arranged in reverse-Mathematica order.
1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 4, 3, 4, 2, 2, 4, 6, 2, 6, 2, 2, 4, 4, 2, 3, 9, 4, 2, 2, 4, 4, 2, 6, 6, 3, 12, 1, 2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5, 2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10, 2, 2, 4, 4, 2, 4, 6, 4, 4, 6, 3, 6, 12, 2, 6
Offset: 1
Examples
The Mathematica ordering of the 6 antidiagonal partitions of 8 follows: 3221, 32111, 22211, 221111, 2111111, 11111111. Frequencies of these among the 22 partitions of 8 are given in reverse Mathematica ordering as follows: 11111111 occurs 2 times, 2111111 occurs 2 times, 221111 occurs 4 times, 22211 occurs 6 times, 32111 occurs 2 times, and 3221 occurs 6 times, so that row 8 of the array is 2 2 4 6 2 6. ... First 12 rows: 1; 2; 2, 1; 2, 3; 2, 2, 3; 2, 2, 6, 1; 2, 2, 4, 3, 4; 2, 2, 4, 6, 2, 6; 2, 2, 4, 4, 2, 3, 9, 4; 2, 2, 4, 4, 2, 6, 6, 3, 12, 1; 2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5; 2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10;
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Clark Kimberling and Peter J. C. Moses, Ferrers Matrices and Related Partitions of Integers
Crossrefs
Cf. A238326.
Programs
-
Mathematica
z = 20; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; antiDiagPartNE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[Reverse[m], #] &, Range[-#, #] &[Length[m] - 1]]]; a1[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, antiDiagPartNE[#]]]], 0] &, IntegerPartitions[n]]]]]; t = Table[a1[n], {n, 1, z}]; TableForm[Table[a1[n], {n, 1, z}]] (* A238325, array *) u = Flatten[t] (* A238325, sequence *) (* Peter J. C. Moses, 18 February 2014 *)
Extensions
Example corrected by Peter J. Taylor, Apr 10 2022
Comments