This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238331 #11 Feb 28 2014 13:44:49 %S A238331 0,23,0,107,2411,3413,5417,4919,5923,8629,9931,10937,14741,14243, %T A238331 16747,18553,19259,22961,24767,28571,24373,31079,29483,33589,35597, %U A238331 498101,475103,528107,555109,570113,607127,641131,659137,717139,756149,786151,754157,817163 %N A238331 The prime(n)-th prime number ending in prime(n), or 0 if none exists. %C A238331 The first number ending in prime(n) is, of course, prime(n). The numbers 2 and 5 are zero because there are no additional primes ending in those numbers; they are the numbers divisible by 2 or 5. %H A238331 T. D. Noe, <a href="/A238331/b238331.txt">Table of n, a(n) for n = 1..200</a> %e A238331 23 is the third prime ending with 3. %e A238331 107 is the seventh prime ending in 7. %e A238331 2411 is the 11th prime ending in 11. %e A238331 3413 is the 13th prime ending in 13 -- a very unlucky prime. %t A238331 ps = Prime[Range[PrimePi[1000000]]]; t = {}; p = 1; done = False; While[! done,p = NextPrime[p]; len = Length[IntegerDigits[p]]; s = Select[ps, Mod[#, 10^len] == p &, p]; If[Length[s] < p, If[MemberQ[{2, 5}, p], AppendTo[t, 0], done = True], AppendTo[t, s[[-1]]]]]; t %Y A238331 Cf. A000040 (prime numbers). %Y A238331 Cf. A030431, A030432, A167442 (primes ending in 3, 7, 11). %K A238331 nonn,base %O A238331 1,2 %A A238331 _T. D. Noe_, Feb 27 2014