This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238337 #13 Jan 18 2018 08:55:18 %S A238337 1,1,2,2,2,3,3,4,2,1,3,6,2,5,6,7,1,3,1,4,4,5,6,12,2,2,4,1,2,6,3,6,1,2, %T A238337 4,4,1,4,7,6,2,6,7,13,8,4,10,21,1,1,1,2,3,9,2,3,1,3,5,11,4,13,20,4,1, %U A238337 2,3,4,4,8,6,9,1,4,9,2,3,7,9,17,1,1,2,3,2 %N A238337 Number of distinct squarefree numbers in row n of Pascal's triangle. %H A238337 T. D. Noe, <a href="/A238337/b238337.txt">Table of n, a(n) for n = 0..5000</a> %F A238337 a(n) + A064460(n) = A008619(n). - _R. J. Mathar_, Jan 18 2018 %e A238337 a(10)=3 because in row 10 of A007318 we observe the three squarefree numbers 1, 10 and 210. %p A238337 A238337 := proc(n) %p A238337 local sqf ; %p A238337 sqf := {} ; %p A238337 for k from 0 to n do %p A238337 b := binomial(n,k) ; %p A238337 if b=1 or numtheory[issqrfree](b) then %p A238337 sqf := sqf union { b} ; %p A238337 end if; %p A238337 end do: %p A238337 nops(sqf) ; %p A238337 end proc: %p A238337 seq(A238337(n),n=0..10) ; # _R. J. Mathar_, Mar 06 2014 %t A238337 Table[Length[Select[Binomial[n, Range[0, n/2]], SquareFreeQ[#] &]], {n, 0, 100}] %Y A238337 Cf. A048276 (number of squarefree numbers in the entire row), A238336. %K A238337 nonn %O A238337 0,3 %A A238337 _T. D. Noe_, Mar 05 2014