A238339 Square number array read by ascending antidiagonals: T(1,k) = 2*k + 1, and T(n,k) = (2*n^(k+1)-n-1)/(n-1) otherwise.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 29, 9, 1, 1, 11, 41, 79, 61, 11, 1, 1, 13, 61, 169, 241, 125, 13, 1, 1, 15, 85, 311, 681, 727, 253, 15, 1, 1, 17, 113, 517, 1561, 2729, 2185, 509, 17, 1, 1, 19, 145, 799, 3109, 7811, 10921, 6559, 1021, 19, 1
Offset: 0
Examples
Square array begins: 1..1...1.....1......1.......1........1........1... 1..3...5.....7......9......11.......13.......15... 1..5..13....29.....61.....125......253......509... 1..7..25....79....241.....727.....2185.....6559... 1..9..41...169....681....2729....10921....43689... 1.11..61...311...1561....7811....39061...195311... 1.13..85...517...3109...18661...111973...671845... 1.15.113...799...5601...39215...274513..1921599... 1.17.145..1169...9361...74897...599185..4793489... 1.19.181..1639..14761..132859..1195741.10761679... 1.21.221..2221..22221..222221..2222221.22222221...
Crossrefs
Cf. A238303.
Programs
-
Maple
T:= proc(n, k); if n=1 then 2*k+1 else (2*n^(k+1)-n-1)/(n-1) fi end: seq(seq(T(n-k, k), k=0..n), n=0..10); # Georg Fischer, Oct 14 2023
Formula
T(0,k) = A000012(k) = 1;
T(1,k) = A005408(k) = 2k+1;
T(2,k) = A036563(k+2);
T(3,k) = A058481(k+1);
T(4,k) = A083584(k);
T(5,k) = A137410(k);
T(6,k) = A233325(k);
T(7,k) = A233326(k);
T(8,k) = A233328(k);
T(9,k) = A211866(k+1);
T(10,k) = A165402(k+1);
T(n,0) = A000012(n) = 1;
T(n,1) = A005408(n) = 2*n+1;
T(n,2) = A001844(n) = 2*n^2 + 2*n + 1.
Extensions
Definition amended by Georg Fischer, Oct 14 2023