This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238344 #22 Apr 30 2025 14:30:39 %S A238344 1,1,2,3,1,5,3,7,9,11,19,2,15,41,8,22,77,29,30,142,81,3,42,247,205,18, %T A238344 56,421,469,78,77,689,1013,264,5,101,1113,2059,786,37,135,1750,4021, %U A238344 2097,189,176,2712,7558,5179,751,8,231,4128,13780,11998,2558,73,297,6208,24440,26400,7762,429 %N A238344 Irregular triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k descents, n>=0, 0<=k<=floor(n/3). %C A238344 Same as A238343, with zeros omitted. %C A238344 Columns k=0-10 give: A000041, A241626, A241627, A241628, A241629, A241630, A241631, A241632, A241633, A241634, A241635. %C A238344 Row sums are A011782. %C A238344 T(3n,n) = A000045(n+1). %C A238344 T(3n+1,n) = A136376(n+1). %H A238344 Joerg Arndt and Alois P. Heinz, <a href="/A238344/b238344.txt">Rows n = 0..250, flattened</a> %F A238344 Sum_{k=0..floor(n/3)} k * T(n,k) = A045883(n-2) for n>=2. %e A238344 Triangle starts: %e A238344 00: 1; %e A238344 01: 1; %e A238344 02: 2; %e A238344 03: 3, 1; %e A238344 04: 5, 3; %e A238344 05: 7, 9; %e A238344 06: 11, 19, 2; %e A238344 07: 15, 41, 8; %e A238344 08: 22, 77, 29; %e A238344 09: 30, 142, 81, 3; %e A238344 10: 42, 247, 205, 18; %e A238344 11: 56, 421, 469, 78; %e A238344 12: 77, 689, 1013, 264, 5; %e A238344 13: 101, 1113, 2059, 786, 37; %e A238344 14: 135, 1750, 4021, 2097, 189; %e A238344 15: 176, 2712, 7558, 5179, 751, 8; %e A238344 16: 231, 4128, 13780, 11998, 2558, 73; %e A238344 17: 297, 6208, 24440, 26400, 7762, 429; %e A238344 18: 385, 9201, 42358, 55593, 21577, 1945, 13; %e A238344 19: 490, 13502, 71867, 112814, 55867, 7465, 139; %e A238344 20: 627, 19585, 119715, 221639, 136478, 25317, 927; %e A238344 ... %p A238344 b:= proc(n, i) option remember; `if`(n=0, 1, expand( %p A238344 add(b(n-j, j)*`if`(j<i, x, 1), j=1..n))) %p A238344 end: %p A238344 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): %p A238344 seq(T(n), n=0..20); %t A238344 b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, j]*If[j<i, x, 1], {j, 1, n} ]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Feb 11 2015, after Maple *) %Y A238344 Cf. A045883. %K A238344 nonn,tabf,look %O A238344 0,3 %A A238344 _Joerg Arndt_ and _Alois P. Heinz_, Feb 25 2014