This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238352 #34 Feb 11 2015 06:05:29 %S A238352 1,0,1,1,1,1,1,1,1,4,2,3,2,3,7,0,1,3,7,5,4,14,4,5,19,3,3,8,24,9,0,1,9, %T A238352 32,11,4,12,46,15,4,13,60,21,7,17,85,28,1,4,22,109,28,16,0,1,28,140, %U A238352 51,7,5,34,179,57,26,1,42,239,74,25,5,48,300,107,24 %N A238352 Irregular triangle T(n,k) read by rows: T(n,k) is the number of partitions p(1), p(2), ..., p(m) of n (as weakly ascending list of parts) with k parts p at position p (fixed points), n>=0, 0<=k<= (column index of last nonzero term in row n). %C A238352 Row sums are A000041. %C A238352 Column k=0 is A238394, row sums over columns k>=1 give A238395. %C A238352 T(A000217(k),k) = 1, %C A238352 T(A000217(k),k-1) = 0 for k in {1, 3, 4, 5, ... }, %C A238352 T(A000217(k)-1,k-1) = k-1 for k>1. %H A238352 Joerg Arndt and Alois P. Heinz, <a href="/A238352/b238352.txt">Rows n = 0..500, flattened</a> %e A238352 Triangle starts: %e A238352 00: 1; %e A238352 01: 0, 1; %e A238352 02: 1, 1; %e A238352 03: 1, 1, 1; %e A238352 04: 1, 4; %e A238352 05: 2, 3, 2; %e A238352 06: 3, 7, 0, 1; %e A238352 07: 3, 7, 5; %e A238352 08: 4, 14, 4; %e A238352 09: 5, 19, 3, 3; %e A238352 10: 8, 24, 9, 0, 1; %e A238352 11: 9, 32, 11, 4; %e A238352 12: 12, 46, 15, 4; %e A238352 13: 13, 60, 21, 7; %e A238352 14: 17, 85, 28, 1, 4; %e A238352 15: 22, 109, 28, 16, 0, 1; %e A238352 16: 28, 140, 51, 7, 5; %e A238352 17: 34, 179, 57, 26, 1; %e A238352 18: 42, 239, 74, 25, 5; %e A238352 19: 48, 300, 107, 24, 11; %e A238352 20: 59, 397, 122, 43, 1, 5; %e A238352 21: 71, 495, 167, 37, 21, 0, 1; %e A238352 ... %e A238352 The 11 partitions of 6 together with their number of fixed points are: %e A238352 01: [ 1 1 1 1 1 1 ] 1 %e A238352 02: [ 1 1 1 1 2 ] 1 %e A238352 03: [ 1 1 1 3 ] 1 %e A238352 04: [ 1 1 2 2 ] 1 %e A238352 05: [ 1 1 4 ] 1 %e A238352 06: [ 1 2 3 ] 3 %e A238352 07: [ 1 5 ] 1 %e A238352 08: [ 2 2 2 ] 1 %e A238352 09: [ 2 4 ] 0 %e A238352 10: [ 3 3 ] 0 %e A238352 11: [ 6 ] 0 %e A238352 There are 3 partitions with no fixed points, 7 with one, none with 2, and one with 3, giving row 6. %p A238352 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A238352 expand(b(n, i-1) +`if`(i>n, 0, (p-> add((c->c*x^j* %p A238352 `if`(j=i, z, 1))(coeff(p, x, j)), j=0..degree(p,x))) %p A238352 (x*b(n-i, i)))))) %p A238352 end: %p A238352 T:= n-> (p->seq((q->add(coeff(q, x, j), j=0..degree(q, x))) %p A238352 (coeff(p, z, i)), i=0..degree(p, z)))(b(n$2)): %p A238352 seq(T(n), n=0..25); %t A238352 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + If[i>n, 0, Function[{p}, Sum[Function[{c}, c*x^j* If[j == i, z, 1]][Coefficient[p, x, j]], {j, 0, Exponent[p, x]}]] [x*b[n-i, i]]]]]]; T[n_] := Function[{p}, Table[ Function[{q}, Sum[Coefficient[q, x, j], {j, 0, Exponent[q, x]}]][Coefficient[p, z, i]], {i, 0, Exponent[p, z]}]][b[n, n]]; Table[T[n], {n, 0, 25}] // Flatten (* _Jean-François Alcover_, Feb 11 2015, after Maple *) %Y A238352 Cf. A238349 (and A238350) for the same statistics for compositions. %K A238352 nonn,tabf,look %O A238352 0,10 %A A238352 _Joerg Arndt_ and _Alois P. Heinz_, Feb 26 2014