This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238372 #35 Feb 29 2020 18:02:05 %S A238372 1,2,9,40,265,1956,18529,183520,2226753,28663300,421589641,6696832704, %T A238372 117283627201,2190260755060,44645172510345,964646320357696, %U A238372 22317294448547329,547594529028427908,14246751684203363593,390309056795283743200,11276891642831796476481 %N A238372 Number of labeled rooted trees with n nodes with every leaf at the same height. %H A238372 Alois P. Heinz, <a href="/A238372/b238372.txt">Table of n, a(n) for n = 1..200</a> %F A238372 E.g.f.: Sum_{i>=1} P_i with P_1 = x and P_i = x * (exp(P_{i-1})-1) for i>1. %F A238372 a(n) = T(n,1), T(n,m) = n!/(n-m)!*Sum_{k=1..n-m}(stirling2(k,m)*T(n-m,k)), T(n,n)=1. - _Vladimir Kruchinin_, Apr 01 2015 %e A238372 On 4 vertices, there are: %e A238372 24 rooted trees X-O-O-O %e A238372 12 rooted trees X-O-O %e A238372 \ %e A238372 O %e A238372 4 rooted trees X %e A238372 /|\ %e A238372 O O O %p A238372 p:= proc(i) p(i):= `if`(i=1, x, x*(exp(p(i-1))-1)) end: %p A238372 s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+p(n)) end: %p A238372 a:= n-> n! * coeff(series(s(n), x, n+1), x, n): %p A238372 seq(a(n), n=1..25); # _Alois P. Heinz_, Feb 26 2014 %t A238372 T[n_, n_] = 1; T[n_, m_] := T[n, m] = n!/(n-m)!*Sum[StirlingS2[k, m]*T[n-m, k], {k, 1, n-m}]; a[n_] := T[n, 1]; Array[a, 25] (* _Jean-François Alcover_, Jan 08 2016, after _Vladimir Kruchinin_ *) %o A238372 (Sage) %o A238372 x = QQ[['x']].gen() %o A238372 P = {} %o A238372 N = 20 %o A238372 P[1] = x.O(N) %o A238372 for i in range(2, N): %o A238372 P[i] = x*(P[i-1].exp(N)-1) %o A238372 add(P[u] for u in P) %o A238372 (Maxima) %o A238372 T(n,m):=if n=m then 1 else n!/(n-m)!*sum(stirling2(k,m)*T(n-m,k),k,1,n-m); %o A238372 makelist(T(n,1),n,1,15); /* _Vladimir Kruchinin_, Apr 01 2015 */ %Y A238372 Cf. A048816 for the unlabeled version. %K A238372 nonn %O A238372 1,2 %A A238372 _F. Chapoton_, Feb 25 2014